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L. Torricelli (LMU) Inverse Lévy subordination in option pricing March 28, 2018 2 / 34



Overview

1 Time changes using inverse Lévy subordinators

2 Analytical theory. Fractional di↵usions and CTRWs limits

3 Transform analysis and pricing

4 Time changes and measure change
5 Financial applications

Trading suspensions
Time multiscaling and illiquidity/liquidity transitions
Investor inertia and ”flat volatiliy” modelling
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1. Time changes using inverse Lévy subordinators

Take a semimartingale return model Xt on a filtered space and an
increasing process Tt .

The time changed process XTt is popular in financial modelling of
returns/prices.

1 If Xt and Tt are Lévy and independent ! XTt is Lévy . If Xt is a
Brownian Motion business time interpretation (Carr, Madan, Yor,
Geman, Barndor↵-Nielsen etc..)

2 If Tt is absolutely continuous and increasing: ! stochastic volatility.
Dubins-Schwarz theorem or stochastic Lévy volatility

Critical properties above: either Tt-continuity of Xt or independence.
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1. Time changes using inverse Lévy subordinators

Can one go beyond these two ideas? And if so, what would be the

point for financial modelling?
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1. Time changes using inverse Lévy subordinators

Suppose we have an increasing Lévy process (subordinator) Lt . Define:

Ht = inf {s : Ls > t}

the first hitting time of t or the inverse process to Ht .

Ht is increasing. If Lt is strictly increasing (so Lt no driftless CPP)
then Ht is continuous and any process Xt is Ht-continuous.

Thus XHt inherits semimartingale properties from Ht (Jacod 1979) !
change to EMM possible (in principle..) by fiddling with the
chasracteristics.

XHt is not Markovian and has non stationary increments;

In some cases XHt can show long range dependence

Ht and Xt do not need to be independent!

Good. But what for?
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Suppose we have an increasing Lévy process (subordinator) Lt . Define:

Ht = inf {s : Ls > t}

the first hitting time of t or the inverse process to Ht .

Ht is increasing. If Lt is strictly increasing (so Lt no driftless CPP)
then Ht is continuous and any process Xt is Ht-continuous.

Thus XHt inherits semimartingale properties from Ht (Jacod 1979) !
change to EMM possible (in principle..) by fiddling with the
chasracteristics.

XHt is not Markovian and has non stationary increments;

In some cases XHt can show long range dependence

Ht and Xt do not need to be independent!

Good. But what for?
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1. Time changes using inverse Lévy subordinators

Ht when Lt is a CPP with drift
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1. Time changes using inverse Lévy subordinators

Ht when Lt is a driftless ↵-stable subordinator. In this case Ht is neither Lévy nor
Lebesgue- absolutely continuous: purely singular time change! (compare with 1.
and 2. from first slide).
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2. Analytical theory

Processes of the form XHt are actually very well reasearched.
Technicalitites

The Caputo derivative @↵t of order ↵ < 1 of a positive function f (t) is:

@↵t =
1

�(1� ↵)

Z 1

0

f 0(u)(t � u)�↵du

If ·̂ is the Fourier transform observe by convolution:

ˆ@↵t f (s) = s↵ f̂ (s)� s↵�1f (0+)
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2. Analytical theory

Example 1 Xt = t, Lt standard ↵-stable subordinator (char func:
exp(�s↵)). Ht is an inverse ↵-stable subordinator.

We known
E[e�sTt ] = E↵(�st↵)

with

E↵(z) =
1X

j=0

z j

�(1 + ↵j)

the Mittag-Le✏er function.
Laplace transforming in t: ˆE↵(�st↵) = y↵�1/(y↵ + s) so that:

y↵ ˆE↵(�st↵)� y↵�1 = �s ˆE↵(�st↵)

inverting the double Laplace transform and using the relation in the
slide before we see that, the density p(t, x) solves:

@↵t p(t, x) = @xp(t, x)

L. Torricelli (LMU) Inverse Lévy subordination in option pricing March 28, 2018 9 / 34



2. Analytical theory

Example 1 Xt = t, Lt standard ↵-stable subordinator (char func:
exp(�s↵)). Ht is an inverse ↵-stable subordinator.

We known
E[e�sTt ] = E↵(�st↵)

with

E↵(z) =
1X

j=0

z j

�(1 + ↵j)

the Mittag-Le✏er function.
Laplace transforming in t: ˆE↵(�st↵) = y↵�1/(y↵ + s) so that:

y↵ ˆE↵(�st↵)� y↵�1 = �s ˆE↵(�st↵)

inverting the double Laplace transform and using the relation in the
slide before we see that, the density p(t, x) solves:

@↵t p(t, x) = @xp(t, x)
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2. Analytical theory

Example 2 Xt is a Poisson process, Lt an independent ↵-stable
subordinator. XHt is the fractional Poisson process.

Equivalently: a renewal process with Mittag Le✏er distributed waiting
times of parameter � (Poisson ! exponential-� waiting).

Its density p(t, x) solves the master PIDE.

@↵t p(t, x) = �

Z

R
(p(t, x + y)� p(t, x))f (y)dy

where f is the jump distribution.
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2. Analytical theory

Example 3 More fractional di↵usions equations arise as stable scaling
Limit of CTRWs.

Let Ti i.i.d. waiting times, Yi returns (possibly coupled), set
Nt = max{n :

P
Ti < t} and consider the CTRW SNt .

If Var [Yi ] < 1, E[Ti ] < 1 Ti ⇠ exp(�) then Renewal theorem+
CLT:

c�1/2S
[cNt ]

! �Wt

.

if P(Yi > r) ⇠ r�↵, P(Yi > r) ⇠ r�� , 0 < ↵ < 2, 0 < � < 1 then
(Meerscahert Sche✏er 2004)

c��/↵S
[cNt ]

! XHt

with Xt an ↵-stable process and Lt a �-stable subordinator. If Yi and
Ti are dependent, so are Xt and Lt .
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2. Analytical theory

Interpretation of SNt : tick-by-tick model of trade arriving at power-law
distributed times and with possbily infinite variance returns. Distributions
can be coupled. Very realistic!

In the independent case the densitxy p(x , t) of XHt satisfies (again
Meerschaert Sche✏er 2004)

@�t p(t, x) = �@↵|x |p(t, x)

for � > 0 depends on Ti (e.g. M-L parameter), some operator @↵|x |
characterized by ˆ@↵|x |p(t, x) = |s|↵p̂(t, x)� �x t��/�(1� �) and

coinciding with the Caputo derivatives if p > 0. Sometimes p(t, x) is
known explicitly.

XHt = t�/↵XH
1

i.e. selfsimilar with Hurst exponent �/↵. Non
gaussian, nonstationary, selfsimilar process ( ! compare against:
fractional Brownian Motion).
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2. Analytical theory

Theorem (Meerschaert and Sche✏er 2009)

Let Xt , Lt be independent with Fourier and Laplace exponents  X �L.
Then if LX and LL be the generator of the convolution semigroups T L

t

and TX
t associated with Xt andLt . Then the density p(t, x) of XHt

satisfies in the mild sense the abstract Cauchy problem:

C (LL)p(x , t) = LXp(x , t)

where C (LL) is the Caputo generalized operator defined by

ˆC (LL)f (x , s) = ˆLLf (x , s)� s�1�L(s)f̂ (x , 0) (1)

= �L(s)f̂ (x , s)� s�1�L(s)f̂ (x , 0) (2)

A general version for dependent Xt , Lt exists but is not as nice.
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3. Transform analysis and pricing

This analytic theory makes also possible the characteristic function
analysis. (again Meerschaert and Sche✏er 2009)

Let  X ,L(z , t) be the Fourier-Laplace epxonent of Xt , Lt :

Z 1

0

e�stE[e izXTHt� ]dt =
1

s

�L(s)

 X ,L(z , s)

when either :

1 Xt are independent

2 Lt has infinite activity and no drift.

Important! in case 2 by stochastic continuity XHt = XHt�
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3. Transform analysis and pricing

Limitations:

1 The formulae refer to XHt� which is di↵erent from XHt when Xt and
Ht are dependent. This is not right-continuous (therefore, not a
semimartingale).

2 In the dependent case, proof valid only if Lt is driftless. Whether this
is a technical or structural is an interesting question. For example
when Xt = Lt this assumpiton can be relaxed.

I have some ideas about extensions/ways around these problems, but are
still matter research.
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4. Time changes and measure changes

Let Xt be a process adapted to a time change Tt and assume Xt and Tt

to be independent.

Zt is a martingale density for Xt . Then ZTt is a martingale density for
XTt inducing QZ ⇠ P. (Jacod, Jacod and Shiryaev)

However we can also do a change measure on Ht !. If Yt is a
martingale density for Tt inducing QY ⇠ P then:

YtZTY
t
=

dQZ ,Y

dP

where TY
t refers to the QY -dynamics of Tt .

Idea: also the parameters of Ht in a pricing model could be subject of
investors views and calibrated to market.
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5. Applications

Previous literature:

1 Scalas, Gorenflo and Mainardi (2001): modeling of tick-by-tick
intra-day trades using the fractional equation corresponding to Xt ↵
Lévy, stable, and Lt , �-stable subordinator. ”Phenomenological”
model. No option pricing, no martingale relations.

2 Magdiarz (2009). Considers B.S subdi↵usive, i.e. WHt where Lt is ↵
stable. Again no analysis Q ⇠ P, no pricing formula, little financial
motivation. Dubious the choice of the subordinator for interdaily
purposes (infinite length of flat spots, at all time scales). Extensions
to stochastic volatility: same issues.

Therefore seems no proper no-arbitrage analysis have been carried out and
no attempts at structured option pricing/implied vol modeling. But these
seem to be obtainable according to our discussion.

Following are some possible models
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5A. Time multiscaling

Assume Xt Lévy and Lt (indep.) be tempered standard stable
subordinator: parameters ↵ < 1, � > 0. Lévy measure

⌫(dx) ⇠ C
e��x

x1+↵
I{x>0}dx

↵ Selfsimilarity parameter. Inverse of Hurst exponent, ”power law”
behaviour.

� ”cuto↵ parameter”. Decreases the rate of occurrence of the big
jumps and makes moments finite

Thus logSt = XHt can be used to model an asset with various degrees of
delay of the trading activity at di↵erent time scales i.e. ”time
multiscaling”:

Fixed t: higher �, less incidence of long waiting times, more akin to
Lévy activity.

Fixed �: longer time scale, increased resemblance to a di↵usion ! by
finite variance/CLT.
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L. Torricelli (LMU) Inverse Lévy subordination in option pricing March 28, 2018 18 / 34



5A. Time multiscaling
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5A. Time multiscaling

T = 0.1, � = 1, ↵ = 0.5. Short term stale tade arrivals
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5A. Time multiscaling

T = 1, � = 1, ↵ = 0.5. The situation does not improve much at longer horizon.
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5A. Time multiscaling

T = 0.1, � = 50, ↵ = 0.5. Not that di↵erent from the case � = 1
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5A. Time multiscaling

T = 1, � = 50, ↵ = 0.5. Now trade is much more fluid.
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5A. Time multiscaling

The process is non-Markovian and has a marked long-rang
dependence (Leonenko et. al)

When � = 0 the Laplace inversion yielding to the model c.f. can be
performed exactly, and involves the Mittag Le✏er function

The parameter � when calibrated to option prices (remember!) gives
the price of market latency risk, which is the compensation investor
should require to face the risk an illiquid asset does not become liquid
as time goes on.

The volatility surfaces show a very steep short term structure,
eventually flattening (unless � = 0). Improved cross secitonal
calibration?
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L. Torricelli (LMU) Inverse Lévy subordination in option pricing March 28, 2018 23 / 34



5A. Time multiscaling

Xt Normal Inverse Gaussian; ↵ = 0.25, � = 2. From the ”rear” of the surface we
can appreciate the steeper term structure.
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5A. Time multiscaling

We can model transitions from illiquidity to liquidity at a fixed time
scale, by introducing an exponential time ⇠, of parameter � i.e.

log St = XHt I{t<⇠} + Xt I{t>⇠}

which is analytically tractable because

E[e iz log(St)] = E[e iz log(XHt )]e�� + et X (z)(1� e��)

Introduction of dependence between Xt and Lt is highly desirable but
seems slightly problematic for martignale relations

L. Torricelli (LMU) Inverse Lévy subordination in option pricing March 28, 2018 25 / 34



5A. Time multiscaling

We can model transitions from illiquidity to liquidity at a fixed time
scale, by introducing an exponential time ⇠, of parameter � i.e.

log St = XHt I{t<⇠} + Xt I{t>⇠}

which is analytically tractable because

E[e iz log(St)] = E[e iz log(XHt )]e�� + et X (z)(1� e��)

Introduction of dependence between Xt and Lt is highly desirable but
seems slightly problematic for martignale relations

L. Torricelli (LMU) Inverse Lévy subordination in option pricing March 28, 2018 25 / 34



5B. Trading suspensions

Problem: to a stock with suspection one cannot apply directly the
no-arbitrage principle because it is not traded at all times
Idea: separate fundamental value and market quote and require by market
e�cency that they coincide when the market is open.

1 Xt is the trade noise and Rt the non-trade noise (”market gossip”)

2 Lt is a rate � CPP with drift 1 and exp ⇠ � jump sizes (linear
time+exponential suspension waiting)

3 Define the fundamental value log St = XHt + Rt + rt

4 Introduce a second time change: ⌧t = LHt� is the last instant of
quote update before t.

5 Define the quote process as the time change Qt = S⌧t
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L. Torricelli (LMU) Inverse Lévy subordination in option pricing March 28, 2018 26 / 34



5B. Trading suspensions

However one should not use Qt as an underlying because (s)he loses
interest comparing to St !

Rather, the derivative should reference in case at matruity the asset is
suspended, Qt+ interests: i.e. pay on the ”forward” Ft

Ft = er(t�⌧t)Qt

Note that e�rtFt being a martingale is equivalent to e�r⌧tQt being a
martingale ! ”stochastic discounting principle for assets with
suspensions”

� and � are the parameters in Ht for the market price of suspension
risk

Volatility surface: �, and � steepen further the short term skew )
impact of trading halts on weekly option pricing!
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L. Torricelli (LMU) Inverse Lévy subordination in option pricing March 28, 2018 27 / 34



5B. Trading suspensions

St . In red the suspension, fundamental value evolves only due to Rt

Qt and Ft . The discounted value e�rtQt is not a martingale, but e�rtFt is.
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5B. Trading suspensions

Xt CGMY, compared to Ft . � = 2, � = 50, monthly. Excess skew observed.

� = 12, � = 50, monthly. Increasing jump frequency, further steepening
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5B. Trading suspensions

� = 2, � = 12, monthly. Increasing jump duration, same e↵ect

� = 2, � = 12, yearly. Which seems to persist at longer maturities.
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5C. Flat volatility, investors inertia

Consistently with behavioural models, volatility series of some asset show
periods of staleness punctuated by bursts of activity (Ghoulmie et al. 2005)

) Idea: use Ht to flatten volatiliy
Take Xt , vt driven by an SDE involving correlated B.M W 1

t ,W
2

t and an
inverse subordinator to Lt to produce the time changed SDE for vHt .

Time-changed stochastic calculus available (Kobayashi 2010);

Feynman Kac theorems and series expressions for the density function
p(t, x) of vHt available (Leonenko, Meerschaert, Sirjoski 2013)

This model has long memory. Furthermore I expect it to be able to
reproduce short ATM skew (sheer intuition, and comparison with the other
two solutions) and maybe this can be quantitatively assessed using
martingale expansions (Aloset al. 2006, Fukusawa 2010) ) competitor of
rough volatiltiy?

Problem: analytical tractability?
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Thanks for the attention

(input, crticism and cooperation appreciated!)
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