Inverse Lévy subordination in option pricing

Lorenzo Torricelli

LMU Department of Mathematics

University of Padova, 28th of March 2018

- ② Analytical theory. Fractional diffusions and CTRWs limits
- Transform analysis and pricing
- Time changes and measure change
- Financial applications
 - Trading suspensions
 - Time multiscaling and illiquidity/liquidity transitions
 - Investor inertia and "flat volatiliy" modelling

- Analytical theory. Fractional diffusions and CTRWs limits
- Transform analysis and pricing
- Time changes and measure change
- Financial applications
 - Trading suspensions
 - Time multiscaling and illiquidity/liquidity transitions
 - Investor inertia and "flat volatiliy" modelling

- Time changes using inverse Lévy subordinators
- Analytical theory. Fractional diffusions and CTRWs limits
- Transform analysis and pricing
- Time changes and measure change
- Financial applications
 - Trading suspensions
 - Time multiscaling and illiquidity/liquidity transitions
 - Investor inertia and "flat volatiliy" modelling

- Time changes using inverse Lévy subordinators
- ② Analytical theory. Fractional diffusions and CTRWs limits
- Transform analysis and pricing
- Time changes and measure change
- Financial applications
 - Trading suspensions
 - Time multiscaling and illiquidity/liquidity transitions
 - Investor inertia and "flat volatiliy" modelling

- Time changes using inverse Lévy subordinators
- Analytical theory. Fractional diffusions and CTRWs limits
- Transform analysis and pricing
- Time changes and measure change
- Sinancial applications
 - Trading suspensions
 - Time multiscaling and illiquidity/liquidity transitions
 - Investor inertia and "flat volatiliy" modelling

- Time changes using inverse Lévy subordinators
- Analytical theory. Fractional diffusions and CTRWs limits
- Transform analysis and pricing
- Time changes and measure change
- Financial applications
 - Trading suspensions
 - Time multiscaling and illiquidity/liquidity transitions
 - Investor inertia and "flat volatiliy" modelling

The time changed process X_{T_t} is popular in financial modelling of returns/prices.

- If X_t and T_t are Lévy and independent $\rightarrow X_{T_t}$ is Lévy . If X_t is a Brownian Motion business time interpretation (Carr, Madan, Yor, Geman, Barndorff-Nielsen etc..)
- If T_t is absolutely continuous and increasing: → stochastic volatility. Dubins-Schwarz theorem or stochastic Lévy volatility

The time changed process X_{T_t} is popular in financial modelling of returns/prices.

- If X_t and T_t are Lévy and independent $\rightarrow X_{T_t}$ is Lévy . If X_t is a Brownian Motion business time interpretation (Carr, Madan, Yor, Geman, Barndorff-Nielsen etc..)
- ② If T_t is absolutely continuous and increasing: → stochastic volatility. Dubins-Schwarz theorem or stochastic Lévy volatility

The time changed process X_{T_t} is popular in financial modelling of returns/prices.

- If X_t and T_t are Lévy and independent $\rightarrow X_{T_t}$ is Lévy . If X_t is a Brownian Motion business time interpretation (Carr, Madan, Yor, Geman, Barndorff-Nielsen etc..)
- If T_t is absolutely continuous and increasing: → stochastic volatility. Dubins-Schwarz theorem or stochastic Lévy volatility

The time changed process X_{T_t} is popular in financial modelling of returns/prices.

- If X_t and T_t are Lévy and independent $\rightarrow X_{T_t}$ is Lévy . If X_t is a Brownian Motion business time interpretation (Carr, Madan, Yor, Geman, Barndorff-Nielsen etc..)
- If T_t is absolutely continuous and increasing: → stochastic volatility. Dubins-Schwarz theorem or stochastic Lévy volatility

Can one go beyond these two ideas? And if so, what would be the point for financial modelling?

Suppose we have an increasing Lévy process (subordinator) L_t . Define:

 $H_t = \inf\{s: L_s > t\}$

the first hitting time of t or the inverse process to H_t .

- *H_t* is increasing. If *L_t* is strictly increasing (so *L_t* no driftless CPP) then *H_t* is continuous and any process *X_t* is *H_t*-continuous.
- Thus X_{H_t} inherits semimartingale properties from H_t (Jacod 1979) \rightarrow change to EMM possible (in principle..) by fiddling with the chasracteristics.
- X_{H_t} is not Markovian and has non stationary increments;
- In some cases X_{H_t} can show long range dependence
- H_t and X_t do not need to be independent!

Suppose we have an increasing Lévy process (subordinator) L_t . Define:

$$H_t = \inf\{s : L_s > t\}$$

the first hitting time of t or the inverse process to H_t .

- H_t is increasing. If L_t is strictly increasing (so L_t no driftless CPP) then H_t is continuous and any process X_t is H_t -continuous.
- Thus X_{H_t} inherits semimartingale properties from H_t (Jacod 1979) \rightarrow change to EMM possible (in principle..) by fiddling with the chasracteristics.
- X_{H_t} is not Markovian and has non stationary increments;
- In some cases X_{H_t} can show long range dependence
- H_t and X_t do not need to be independent!

Suppose we have an increasing Lévy process (subordinator) L_t . Define:

$$H_t = \inf\{s : L_s > t\}$$

the first hitting time of t or the inverse process to H_t .

- H_t is increasing. If L_t is strictly increasing (so L_t no driftless CPP) then H_t is continuous and any process X_t is H_t -continuous.
- Thus X_{H_t} inherits semimartingale properties from H_t (Jacod 1979) \rightarrow change to EMM possible (in principle..) by fiddling with the chasracteristics.
- X_{H_t} is not Markovian and has non stationary increments;
- In some cases X_{H_t} can show long range dependence
- H_t and X_t do not need to be independent!

Suppose we have an increasing Lévy process (subordinator) L_t . Define:

$$H_t = \inf\{s : L_s > t\}$$

the first hitting time of t or the inverse process to H_t .

- H_t is increasing. If L_t is strictly increasing (so L_t no driftless CPP) then H_t is continuous and any process X_t is H_t -continuous.
- Thus X_{H_t} inherits semimartingale properties from H_t (Jacod 1979) \rightarrow change to EMM possible (in principle..) by fiddling with the chasracteristics.
- X_{H_t} is not Markovian and has non stationary increments;
- In some cases X_{H_t} can show long range dependence
- H_t and X_t do not need to be independent!

Suppose we have an increasing Lévy process (subordinator) L_t . Define:

$$H_t = \inf\{s : L_s > t\}$$

the first hitting time of t or the inverse process to H_t .

- H_t is increasing. If L_t is strictly increasing (so L_t no driftless CPP) then H_t is continuous and any process X_t is H_t -continuous.
- Thus X_{H_t} inherits semimartingale properties from H_t (Jacod 1979) \rightarrow change to EMM possible (in principle..) by fiddling with the chasracteristics.
- X_{H_t} is not Markovian and has non stationary increments;
- In some cases X_{H_t} can show long range dependence
- H_t and X_t do not need to be independent!

Suppose we have an increasing Lévy process (subordinator) L_t . Define:

$$H_t = \inf\{s : L_s > t\}$$

the first hitting time of t or the inverse process to H_t .

- H_t is increasing. If L_t is strictly increasing (so L_t no driftless CPP) then H_t is continuous and any process X_t is H_t -continuous.
- Thus X_{H_t} inherits semimartingale properties from H_t (Jacod 1979) \rightarrow change to EMM possible (in principle..) by fiddling with the chasracteristics.
- X_{H_t} is not Markovian and has non stationary increments;
- In some cases X_{H_t} can show long range dependence
- H_t and X_t do not need to be independent!

Suppose we have an increasing Lévy process (subordinator) L_t . Define:

$$H_t = \inf\{s : L_s > t\}$$

the first hitting time of t or the inverse process to H_t .

- H_t is increasing. If L_t is strictly increasing (so L_t no driftless CPP) then H_t is continuous and any process X_t is H_t -continuous.
- Thus X_{H_t} inherits semimartingale properties from H_t (Jacod 1979) \rightarrow change to EMM possible (in principle..) by fiddling with the chasracteristics.
- X_{H_t} is not Markovian and has non stationary increments;
- In some cases X_{H_t} can show long range dependence
- H_t and X_t do not need to be independent!

 H_t when L_t is a CPP with drift

 H_t when L_t is a driftless α -stable subordinator. In this case H_t is neither Lévy nor Lebesgue- absolutely continuous: purely singular time change! (compare with 1. and 2. from first slide).

• The Caputo derivative ∂_t^{α} of order $\alpha < 1$ of a positive function f(t) is:

$$\partial_t^{\alpha} = rac{1}{\Gamma(1-lpha)} \int_0^{\infty} f'(u)(t-u)^{-lpha} du$$

$$\partial_t^{\alpha} \hat{f}(s) = s^{\alpha} \hat{f}(s) - s^{\alpha-1} f(0+)$$

• The Caputo derivative ∂_t^{α} of order $\alpha < 1$ of a positive function f(t) is:

$$\partial_t^{\alpha} = rac{1}{\Gamma(1-\alpha)} \int_0^{\infty} f'(u)(t-u)^{-lpha} du$$

$$\partial_t^{\alpha} \hat{f}(s) = s^{\alpha} \hat{f}(s) - s^{\alpha-1} f(0+)$$

• The Caputo derivative ∂_t^{α} of order $\alpha < 1$ of a positive function f(t) is:

$$\partial_t^{\alpha} = \frac{1}{\Gamma(1-\alpha)} \int_0^{\infty} f'(u)(t-u)^{-\alpha} du$$

$$\partial_t^{\alpha} \hat{f}(s) = s^{\alpha} \hat{f}(s) - s^{\alpha-1} f(0+)$$

• The Caputo derivative ∂_t^{α} of order $\alpha < 1$ of a positive function f(t) is:

$$\partial_t^{\alpha} = \frac{1}{\Gamma(1-\alpha)} \int_0^{\infty} f'(u)(t-u)^{-\alpha} du$$

$$\partial_t^{\alpha} \hat{f}(s) = s^{\alpha} \hat{f}(s) - s^{\alpha-1} f(0+)$$

Example 1 $X_t = t$, L_t standard α -stable subordinator (char func: $\exp(-s^{\alpha})$). H_t is an inverse α -stable subordinator.

We known

 $\mathbb{E}[e^{-sT_t}] = E_\alpha(-st^\alpha)$

with

• Laplace transforming in t: $E_{\alpha}(\hat{-st^{\alpha}}) = y^{\alpha-1}/(y^{\alpha}+s)$ so that:

$$y^{lpha} E_{lpha}(\hat{-s}t^{lpha}) - y^{lpha - 1} = -sE_{lpha}(\hat{-s}t^{lpha})$$

 inverting the double Laplace transform and using the relation in the slide before we see that, the density ρ(t, x) solves:

$$\partial_t^{\alpha} p(t,x) = \partial_x p(t,x)$$

Example 1 $X_t = t$, L_t standard α -stable subordinator (char func: $\exp(-s^{\alpha})$). H_t is an inverse α -stable subordinator.

• We known

$$\mathbb{E}[e^{-sT_t}] = E_\alpha(-st^\alpha)$$

with

$$E_{\alpha}(z) = \sum_{j=0}^{\infty} \frac{z^j}{\Gamma(1+\alpha j)}$$

the Mittag-Leffler function.

• Laplace transforming in t: $E_{\alpha}(-st^{\alpha}) = y^{\alpha-1}/(y^{\alpha}+s)$ so that:

$$y^{\alpha}E_{\alpha}(\hat{-}st^{\alpha}) - y^{\alpha-1} = -sE_{\alpha}(\hat{-}st^{\alpha})$$

• inverting the double Laplace transform and using the relation in the slide before we see that, the density p(t, x) solves:

$$\partial_t^{\alpha} p(t,x) = \partial_x p(t,x)$$

Example 1 $X_t = t$, L_t standard α -stable subordinator (char func: $\exp(-s^{\alpha})$). H_t is an inverse α -stable subordinator.

• We known

$$\mathbb{E}[e^{-sT_t}] = E_{\alpha}(-st^{\alpha})$$

with

$$E_{\alpha}(z) = \sum_{j=0}^{\infty} \frac{z^j}{\Gamma(1+\alpha j)}$$

the Mittag-Leffler function.

• Laplace transforming in t: $E_{\alpha}(-st^{\alpha}) = y^{\alpha-1}/(y^{\alpha}+s)$ so that:

$$y^{\alpha}E_{\alpha}(-st^{\alpha}) - y^{\alpha-1} = -sE_{\alpha}(-st^{\alpha})$$

• inverting the double Laplace transform and using the relation in the slide before we see that, the density p(t, x) solves:

$$\partial_t^{\alpha} p(t, x) = \partial_x p(t, x)$$

Example 1 $X_t = t$, L_t standard α -stable subordinator (char func: $\exp(-s^{\alpha})$). H_t is an inverse α -stable subordinator.

• We known

$$\mathbb{E}[e^{-sT_t}] = E_{\alpha}(-st^{\alpha})$$

with

$$E_{\alpha}(z) = \sum_{j=0}^{\infty} \frac{z^j}{\Gamma(1+\alpha j)}$$

the Mittag-Leffler function.

• Laplace transforming in t: $E_{\alpha}(-st^{\alpha}) = y^{\alpha-1}/(y^{\alpha}+s)$ so that:

$$y^{lpha} E_{lpha}(\hat{-st^{lpha}}) - y^{lpha - 1} = -sE_{lpha}(\hat{-st^{lpha}})$$

• inverting the double Laplace transform and using the relation in the slide before we see that, the density p(t, x) solves:

$$\partial_t^{\alpha} p(t, x) = \partial_x p(t, x)$$

Example 1 $X_t = t$, L_t standard α -stable subordinator (char func: $\exp(-s^{\alpha})$). H_t is an inverse α -stable subordinator.

• We known

$$\mathbb{E}[e^{-sT_t}] = E_{\alpha}(-st^{\alpha})$$

with

$$E_{\alpha}(z) = \sum_{j=0}^{\infty} \frac{z^j}{\Gamma(1+\alpha j)}$$

the Mittag-Leffler function.

• Laplace transforming in t: $E_{lpha}(\hat{-st^{lpha}}) = y^{lpha-1}/(y^{lpha}+s)$ so that:

$$y^{lpha} E_{lpha}(\hat{-st}^{lpha}) - y^{lpha-1} = -sE_{lpha}(\hat{-st}^{lpha})$$

 inverting the double Laplace transform and using the relation in the slide before we see that, the density p(t, x) solves:

$$\partial_t^{\alpha} p(t,x) = \partial_x p(t,x)$$

Example 2 X_t is a Poisson process, L_t an independent α -stable subordinator. X_{H_t} is the fractional Poisson process.

- Equivalently: a renewal process with Mittag Leffler distributed waiting times of parameter λ (Poisson → exponential-λ waiting).
- Its density p(t, x) solves the master PIDE.

$$\partial_t^{\alpha} p(t,x) = \lambda \int_{\mathbb{R}} (p(t,x+y) - p(t,x)) f(y) dy$$

where f is the jump distribution.

Example 2 X_t is a Poisson process, L_t an independent α -stable subordinator. X_{H_t} is the fractional Poisson process.

- Equivalently: a renewal process with Mittag Leffler distributed waiting times of parameter λ (Poisson → exponential-λ waiting).
- Its density p(t, x) solves the master PIDE.

$$\partial_t^{\alpha} p(t,x) = \lambda \int_{\mathbb{R}} (p(t,x+y) - p(t,x)) f(y) dy$$

where *f* is the jump distribution.

Example 2 X_t is a Poisson process, L_t an independent α -stable subordinator. X_{H_t} is the fractional Poisson process.

- Equivalently: a renewal process with Mittag Leffler distributed waiting times of parameter λ (Poisson → exponential-λ waiting).
- Its density p(t, x) solves the master PIDE.

$$\partial_t^{\alpha} p(t,x) = \lambda \int_{\mathbb{R}} (p(t,x+y) - p(t,x)) f(y) dy$$

where f is the jump distribution.

Example 3 More fractional diffusions equations arise as stable scaling Limit of CTRWs.

- Let T_i i.i.d. waiting times, Y_i returns (possibly coupled), set $N_t = max\{n : \sum T_i < t\}$ and consider the CTRW S_{N_t} .
- If $Var[Y_i] < \infty$, $\mathbb{E}[T_i] < \infty$ $T_i \sim \exp(\lambda)$ then Renewal theorem+ CLT:

 $c^{-1/2}S_{[cN_t]} \to \lambda W_t$

• if $\mathbb{P}(Y_i > r) \sim r^{-\alpha}$, $\mathbb{P}(Y_i > r) \sim r^{-\beta}$, $0 < \alpha < 2$, $0 < \beta < 1$ then (Meerscahert Scheffler 2004)

$$c^{-\beta/\alpha}S_{[cN_t]} \to X_{H_t}$$

with X_t an α -stable process and L_t a β -stable subordinator. If Y_i and T_i are dependent, so are X_t and L_t .

A D > A B > A B > A B

Example 3 More fractional diffusions equations arise as stable scaling Limit of CTRWs.

- Let T_i i.i.d. waiting times, Y_i returns (possibly coupled), set $N_t = max\{n : \sum T_i < t\}$ and consider the CTRW S_{N_t} .
- If $Var[Y_i] < \infty$, $\mathbb{E}[T_i] < \infty$ $T_i \sim \exp(\lambda)$ then Renewal theorem+ CLT:

 $c^{-1/2}S_{[cN_t]} \to \lambda W_t$

• if $\mathbb{P}(Y_i > r) \sim r^{-\alpha}$, $\mathbb{P}(Y_i > r) \sim r^{-\beta}$, $0 < \alpha < 2$, $0 < \beta < 1$ then (Meerscahert Scheffler 2004)

$$c^{-\beta/\alpha}S_{[cN_t]} \to X_{H_t}$$

with X_t an α -stable process and L_t a β -stable subordinator. If Y_i and T_i are dependent, so are X_t and L_t .

・ロト ・回ト ・ヨト ・ヨト

Example 3 More fractional diffusions equations arise as stable scaling Limit of CTRWs.

- Let T_i i.i.d. waiting times, Y_i returns (possibly coupled), set $N_t = max\{n : \sum T_i < t\}$ and consider the CTRW S_{N_t} .
- If $Var[Y_i] < \infty$, $\mathbb{E}[T_i] < \infty$ $T_i \sim \exp(\lambda)$ then Renewal theorem+ CLT:

$$c^{-1/2}S_{[cN_t]} \rightarrow \lambda W_t$$

• if $\mathbb{P}(Y_i > r) \sim r^{-\alpha}$, $\mathbb{P}(Y_i > r) \sim r^{-\beta}$, $0 < \alpha < 2$, $0 < \beta < 1$ then (Meerscahert Scheffler 2004)

$$c^{-\beta/\alpha}S_{[cN_t]} \to X_{H_t}$$

with X_t an α -stable process and L_t a β -stable subordinator. If Y_i and T_i are dependent, so are X_t and L_t .

.

・ロト ・回ト ・ヨト ・ヨト
Example 3 More fractional diffusions equations arise as stable scaling Limit of CTRWs.

- Let T_i i.i.d. waiting times, Y_i returns (possibly coupled), set $N_t = max\{n : \sum T_i < t\}$ and consider the CTRW S_{N_t} .
- If $Var[Y_i] < \infty$, $\mathbb{E}[T_i] < \infty$ $T_i \sim \exp(\lambda)$ then Renewal theorem+ CLT:

$$c^{-1/2}S_{[cN_t]} \rightarrow \lambda W_t$$

• if $\mathbb{P}(Y_i > r) \sim r^{-\alpha}$, $\mathbb{P}(Y_i > r) \sim r^{-\beta}$, $0 < \alpha < 2$, $0 < \beta < 1$ then (Meerscahert Scheffler 2004)

$$c^{-eta/lpha}S_{[cN_t]} o X_{H_t}$$

with X_t an α -stable process and L_t a β -stable subordinator. If Y_i and T_i are dependent, so are X_t and L_t .

Interpretation of S_{N_t} : tick-by-tick model of trade arriving at power-law distributed times and with possibly infinite variance returns. Distributions can be coupled. Very realistic!

 In the independent case the densitxy p(x, t) of X_{Ht} satisfies (again Meerschaert Scheffler 2004)

$$\partial_t^{\beta} p(t,x) = \lambda \partial_{|x|}^{\alpha} p(t,x)$$

for $\lambda > 0$ depends on T_i (e.g. M-L parameter), some operator $\partial_{|x|}^{\alpha}$ characterized by $\partial_{|x|}^{\alpha} \hat{p}(t,x) = |s|^{\alpha} \hat{p}(t,x) - \delta_x t^{-\beta} / \Gamma(1-\beta)$ and coinciding with the Caputo derivatives if p > 0. Sometimes p(t,x) is known explicitly.

• $X_{H_t} = t^{\beta/\alpha} X_{H_1}$ i.e. selfsimilar with Hurst exponent β/α . Non gaussian, nonstationary, selfsimilar process (\rightarrow compare against: fractional Brownian Motion).

Interpretation of S_{N_t} : tick-by-tick model of trade arriving at power-law distributed times and with possibly infinite variance returns. Distributions can be coupled. Very realistic!

 In the independent case the densitxy p(x, t) of X_{Ht} satisfies (again Meerschaert Scheffler 2004)

$$\partial_t^{\beta} p(t,x) = \lambda \partial_{|x|}^{\alpha} p(t,x)$$

for $\lambda > 0$ depends on T_i (e.g. M-L parameter), some operator $\partial_{|x|}^{\alpha}$ characterized by $\partial_{|x|}^{\alpha} \hat{p}(t,x) = |s|^{\alpha} \hat{p}(t,x) - \delta_x t^{-\beta} / \Gamma(1-\beta)$ and coinciding with the Caputo derivatives if p > 0. Sometimes p(t,x) is known explicitly.

• $X_{H_t} = t^{\beta/\alpha} X_{H_1}$ i.e. selfsimilar with Hurst exponent β/α . Non gaussian, nonstationary, selfsimilar process (\rightarrow compare against: fractional Brownian Motion).

Interpretation of S_{N_t} : tick-by-tick model of trade arriving at power-law distributed times and with possibly infinite variance returns. Distributions can be coupled. Very realistic!

 In the independent case the densitxy p(x, t) of X_{Ht} satisfies (again Meerschaert Scheffler 2004)

$$\partial_t^{\beta} p(t,x) = \lambda \partial_{|x|}^{\alpha} p(t,x)$$

for $\lambda > 0$ depends on T_i (e.g. M-L parameter), some operator $\partial_{|x|}^{\alpha}$ characterized by $\partial_{|x|}^{\alpha} \hat{p}(t,x) = |s|^{\alpha} \hat{p}(t,x) - \delta_x t^{-\beta} / \Gamma(1-\beta)$ and coinciding with the Caputo derivatives if p > 0. Sometimes p(t,x) is known explicitly.

• $X_{H_t} = t^{\beta/\alpha} X_{H_1}$ i.e. selfsimilar with Hurst exponent β/α . Non gaussian, nonstationary, selfsimilar process (\rightarrow compare against: fractional Brownian Motion).

Theorem (Meerschaert and Scheffler 2009)

Let X_t , L_t be independent with Fourier and Laplace exponents $\psi_X \phi_L$. Then if \mathcal{L}_X and \mathcal{L}_L be the generator of the convolution semigroups T_t^L and T_t^X associated with X_t and L_t . Then the density p(t, x) of X_{H_t} satisfies in the mild sense the abstract Cauchy problem:

 $C(\mathcal{L}_L)p(x,t) = \mathcal{L}_X p(x,t)$

where $C(\mathcal{L}_L)$ is the Caputo generalized operator defined by

$$C(\hat{\mathcal{L}}_L)f(x,s) = \hat{\mathcal{L}}_L f(x,s) - s^{-1}\phi_L(s)\hat{f}(x,0)$$
(1)

$$=\phi_L(s)\hat{f}(x,s)-s^{-1}\phi_L(s)\hat{f}(x,0)$$
(2)

A general version for dependent X_t , L_t exists but is not as nice.

Let $\psi_{X,L}(z,t)$ be the Fourier-Laplace epxonent of X_t, L_t :

$$\int_0^\infty e^{-st} \mathbb{E}[e^{izX_{T_{H_t-}}}]dt = \frac{1}{s} \frac{\phi_L(s)}{\psi_{X,L}(z,s)}$$

when either :

X_t are independent

2 L_t has infinite activity and no drift.

Let $\psi_{X,L}(z,t)$ be the Fourier-Laplace epxonent of X_t, L_t :

$$\int_0^\infty e^{-st} \mathbb{E}[e^{izX_{T_{H_t-}}}]dt = \frac{1}{s} \frac{\phi_L(s)}{\psi_{X,L}(z,s)}$$

when either :

1 X_t are independent

2 L_t has infinite activity and no drift.

Let $\psi_{X,L}(z,t)$ be the Fourier-Laplace epxonent of X_t, L_t :

$$\int_0^\infty e^{-st} \mathbb{E}[e^{izX_{T_{H_t-}}}]dt = \frac{1}{s} \frac{\phi_L(s)}{\psi_{X,L}(z,s)}$$

when either :

1 X_t are independent

2 L_t has infinite activity and no drift.

Let $\psi_{X,L}(z,t)$ be the Fourier-Laplace epxonent of X_t, L_t :

$$\int_0^\infty e^{-st} \mathbb{E}[e^{izX_{T_{H_t-}}}]dt = \frac{1}{s} \frac{\phi_L(s)}{\psi_{X,L}(z,s)}$$

when either :

 $I X_t \text{ are independent}$

2 L_t has infinite activity and no drift.

- The formulae refer to X_{Ht} which is different from X_{Ht} when X_t and H_t are dependent. This is not right-continuous (therefore, not a semimartingale).
- 2 In the dependent case, proof valid only if L_t is driftless. Whether this is a technical or structural is an interesting question. For example when $X_t = L_t$ this assumption can be relaxed.

- The formulae refer to X_{Ht} which is different from X_{Ht} when X_t and H_t are dependent. This is not right-continuous (therefore, not a semimartingale).
- ② In the dependent case, proof valid only if L_t is driftless. Whether this is a technical or structural is an interesting question. For example when $X_t = L_t$ this assumption can be relaxed.

- The formulae refer to X_{Ht} which is different from X_{Ht} when X_t and H_t are dependent. This is not right-continuous (therefore, not a semimartingale).
- In the dependent case, proof valid only if L_t is driftless. Whether this is a technical or structural is an interesting question. For example when X_t = L_t this assumption can be relaxed.

- The formulae refer to X_{Ht} which is different from X_{Ht} when X_t and H_t are dependent. This is not right-continuous (therefore, not a semimartingale).
- In the dependent case, proof valid only if L_t is driftless. Whether this is a technical or structural is an interesting question. For example when X_t = L_t this assumption can be relaxed.

- Z_t is a martingale density for X_t . Then Z_{T_t} is a martingale density for X_{T_t} inducing $\mathbb{Q}^Z \sim \mathbb{P}$. (Jacod, Jacod and Shiryaev)
- However we can also do a change measure on H_t!. If Y_t is a martingale density for T_t inducing Q^Y ~ ℙ then:

$$Y_t Z_{\mathcal{T}_t^Y} = \frac{d\mathbb{Q}^{Z,Y}}{d\mathbb{P}}$$

where T_t^Y refers to the \mathbb{Q}^Y -dynamics of T_t .

- Z_t is a martingale density for X_t . Then Z_{T_t} is a martingale density for X_{T_t} inducing $\mathbb{Q}^Z \sim \mathbb{P}$. (Jacod, Jacod and Shiryaev)
- However we can also do a change measure on H_t!. If Y_t is a martingale density for T_t inducing Q^Y ~ P then:

$$Y_t Z_{T_t^Y} = \frac{d\mathbb{Q}^{Z,Y}}{d\mathbb{P}}$$

where T_t^Y refers to the \mathbb{Q}^Y -dynamics of T_t .

- Z_t is a martingale density for X_t . Then Z_{T_t} is a martingale density for X_{T_t} inducing $\mathbb{Q}^Z \sim \mathbb{P}$. (Jacod, Jacod and Shiryaev)
- However we can also do a change measure on H_t!. If Y_t is a martingale density for T_t inducing Q^Y ~ P then:

$$Y_t Z_{T_t^Y} = \frac{d\mathbb{Q}^{Z,Y}}{d\mathbb{P}}$$

where T_t^Y refers to the \mathbb{Q}^Y -dynamics of T_t .

- Z_t is a martingale density for X_t . Then Z_{T_t} is a martingale density for X_{T_t} inducing $\mathbb{Q}^Z \sim \mathbb{P}$. (Jacod, Jacod and Shiryaev)
- However we can also do a change measure on H_t!. If Y_t is a martingale density for T_t inducing Q^Y ~ P then:

$$Y_t Z_{\mathcal{T}_t^{\mathbf{Y}}} = \frac{d\mathbb{Q}^{Z,\mathbf{Y}}}{d\mathbb{P}}$$

where T_t^{Y} refers to the \mathbb{Q}^{Y} -dynamics of T_t .

- Z_t is a martingale density for X_t . Then Z_{T_t} is a martingale density for X_{T_t} inducing $\mathbb{Q}^Z \sim \mathbb{P}$. (Jacod, Jacod and Shiryaev)
- However we can also do a change measure on H_t!. If Y_t is a martingale density for T_t inducing Q^Y ~ P then:

$$Y_t Z_{\mathcal{T}_t^{\mathbf{Y}}} = \frac{d\mathbb{Q}^{Z,\mathbf{Y}}}{d\mathbb{P}}$$

where T_t^{γ} refers to the \mathbb{Q}^{γ} -dynamics of T_t .

Previous literature:

- Scalas, Gorenflo and Mainardi (2001): modeling of tick-by-tick intra-day trades using the fractional equation corresponding to X_t α Lévy, stable, and L_t, β-stable subordinator. "Phenomenological" model. No option pricing, no martingale relations.
- ⁽²⁾ Magdiarz (2009). Considers B.S subdiffusive, i.e. W_{H_t} where L_t is α stable. Again no analysis $\mathbb{Q} \sim \mathbb{P}$, no pricing formula, little financial motivation. Dubious the choice of the subordinator for interdaily purposes (infinite length of flat spots, at all time scales). Extensions to stochastic volatility: same issues.

Therefore seems no proper no-arbitrage analysis have been carried out and no attempts at structured option pricing/implied vol modeling. But these seem to be obtainable according to our discussion.

Following are some possible models

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Previous literature:

- Scalas, Gorenflo and Mainardi (2001): modeling of tick-by-tick intra-day trades using the fractional equation corresponding to X_t α Lévy, stable, and L_t, β-stable subordinator. "Phenomenological" model. No option pricing, no martingale relations.
- Magdiarz (2009). Considers B.S subdiffusive, i.e. W_{Ht} where L_t is α stable. Again no analysis Q ~ P, no pricing formula, little financial motivation. Dubious the choice of the subordinator for interdaily purposes (infinite length of flat spots, at all time scales). Extensions to stochastic volatility: same issues.

Therefore seems no proper no-arbitrage analysis have been carried out and no attempts at structured option pricing/implied vol modeling. But these seem to be obtainable according to our discussion.

Following are some possible models

・ロト ・回ト ・ヨト ・

Previous literature:

- Scalas, Gorenflo and Mainardi (2001): modeling of tick-by-tick intra-day trades using the fractional equation corresponding to X_t α Lévy, stable, and L_t, β-stable subordinator. "Phenomenological" model. No option pricing, no martingale relations.
- Magdiarz (2009). Considers B.S subdiffusive, i.e. W_{Ht} where L_t is α stable. Again no analysis Q ~ P, no pricing formula, little financial motivation. Dubious the choice of the subordinator for interdaily purposes (infinite length of flat spots, at all time scales). Extensions to stochastic volatility: same issues.

Therefore seems no proper no-arbitrage analysis have been carried out and no attempts at structured option pricing/implied vol modeling. But these seem to be obtainable according to our discussion.

Following are some possible models

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Assume X_t Lévy and L_t (indep.) be tempered standard stable subordinator: parameters $\alpha < 1$, $\lambda > 0$. Lévy measure

$$u(dx) \sim C \frac{e^{-\lambda x}}{x^{1+lpha}} I_{\{x>0\}} dx$$

- α Selfsimilarity parameter. Inverse of Hurst exponent, "power law" behaviour.
- λ "cutoff parameter". Decreases the rate of occurrence of the big jumps and makes moments finite

- Fixed t: higher λ, less incidence of long waiting times, more akin to Lévy activity.
- Fixed λ: longer time scale, increased resemblance to a diffusion → by finite variance/CLT.

Assume X_t Lévy and L_t (indep.) be tempered standard stable subordinator: parameters $\alpha < 1$, $\lambda > 0$. Lévy measure

$$u(dx) \sim C \frac{e^{-\lambda x}}{x^{1+\alpha}} I_{\{x>0\}} dx$$

- α Selfsimilarity parameter. Inverse of Hurst exponent, "power law" behaviour.
- λ "cutoff parameter". Decreases the rate of occurrence of the big jumps and makes moments finite

- Fixed t: higher λ, less incidence of long waiting times, more akin to Lévy activity.
- Fixed λ: longer time scale, increased resemblance to a diffusion → by finite variance/CLT.

Assume X_t Lévy and L_t (indep.) be tempered standard stable subordinator: parameters $\alpha < 1$, $\lambda > 0$. Lévy measure

$$u(dx) \sim C \frac{e^{-\lambda x}}{x^{1+\alpha}} I_{\{x>0\}} dx$$

- α Selfsimilarity parameter. Inverse of Hurst exponent, "power law" behaviour.
- λ "cutoff parameter". Decreases the rate of occurrence of the big jumps and makes moments finite

- Fixed t: higher λ, less incidence of long waiting times, more akin to Lévy activity.
- Fixed λ: longer time scale, increased resemblance to a diffusion → by finite variance/CLT.

Assume X_t Lévy and L_t (indep.) be tempered standard stable subordinator: parameters $\alpha < 1$, $\lambda > 0$. Lévy measure

$$u(dx) \sim C \frac{e^{-\lambda x}}{x^{1+\alpha}} I_{\{x>0\}} dx$$

- α Selfsimilarity parameter. Inverse of Hurst exponent, "power law" behaviour.
- λ "cutoff parameter". Decreases the rate of occurrence of the big jumps and makes moments finite

- Fixed t: higher λ, less incidence of long waiting times, more akin to Lévy activity.
- Fixed λ : longer time scale, increased resemblance to a diffusion \rightarrow by finite variance/CLT.

Assume X_t Lévy and L_t (indep.) be tempered standard stable subordinator: parameters $\alpha < 1$, $\lambda > 0$. Lévy measure

$$u(dx) \sim C \frac{e^{-\lambda x}}{x^{1+\alpha}} I_{\{x>0\}} dx$$

- α Selfsimilarity parameter. Inverse of Hurst exponent, "power law" behaviour.
- λ "cutoff parameter". Decreases the rate of occurrence of the big jumps and makes moments finite

- Fixed t: higher λ, less incidence of long waiting times, more akin to Lévy activity.
- Fixed λ: longer time scale, increased resemblance to a diffusion → by finite variance/CLT.

Assume X_t Lévy and L_t (indep.) be tempered standard stable subordinator: parameters $\alpha < 1$, $\lambda > 0$. Lévy measure

$$u(dx) \sim C \frac{e^{-\lambda x}}{x^{1+\alpha}} I_{\{x>0\}} dx$$

- α Selfsimilarity parameter. Inverse of Hurst exponent, "power law" behaviour.
- λ "cutoff parameter". Decreases the rate of occurrence of the big jumps and makes moments finite

- Fixed t: higher λ, less incidence of long waiting times, more akin to Lévy activity.
- Fixed λ: longer time scale, increased resemblance to a diffusion → by finite variance/CLT.

Assume X_t Lévy and L_t (indep.) be tempered standard stable subordinator: parameters $\alpha < 1$, $\lambda > 0$. Lévy measure

$$u(dx) \sim C \frac{e^{-\lambda x}}{x^{1+\alpha}} I_{\{x>0\}} dx$$

- α Selfsimilarity parameter. Inverse of Hurst exponent, "power law" behaviour.
- λ "cutoff parameter". Decreases the rate of occurrence of the big jumps and makes moments finite

- Fixed t: higher λ, less incidence of long waiting times, more akin to Lévy activity.
- Fixed λ: longer time scale, increased resemblance to a diffusion → by finite variance/CLT.

 ${\cal T}=$ 0.1, $\lambda=$ 1, lpha= 0.5. Short term stale tade arrivals

L. Torricelli (LMU)

T = 1, $\lambda = 1$, $\alpha = 0.5$. The situation does not improve much at longer horizon.

 $\mathcal{T}=$ 0.1, $\lambda=$ 50, $\alpha=$ 0.5. Not that different from the case $\lambda=$ 1

 $T=1, \lambda = 50, \alpha = 0.5$. Now trade is much more fluid.

• The process is non-Markovian and has a marked long-rang dependence (Leonenko et. al)

- When $\lambda = 0$ the Laplace inversion yielding to the model c.f. can be performed exactly, and involves the Mittag Leffler function
- The parameter λ when calibrated to option prices (remember!) gives the price of market latency risk, which is the compensation investor should require to face the risk an illiquid asset does not become liquid as time goes on.
- The volatility surfaces show a very steep short term structure, eventually flattening (unless $\lambda = 0$). Improved cross sectional calibration?

- The process is non-Markovian and has a marked long-rang dependence (Leonenko et. al)
- When $\lambda = 0$ the Laplace inversion yielding to the model c.f. can be performed exactly, and involves the Mittag Leffler function
- The parameter λ when calibrated to option prices (remember!) gives the price of market latency risk, which is the compensation investor should require to face the risk an illiquid asset does not become liquid as time goes on.
- The volatility surfaces show a very steep short term structure, eventually flattening (unless $\lambda = 0$). Improved cross sectonal calibration?

▲ @ ▶ < ≥ ▶</p>

- The process is non-Markovian and has a marked long-rang dependence (Leonenko et. al)
- When $\lambda = 0$ the Laplace inversion yielding to the model c.f. can be performed exactly, and involves the Mittag Leffler function
- The parameter λ when calibrated to option prices (remember!) gives the price of market latency risk, which is the compensation investor should require to face the risk an illiquid asset does not become liquid as time goes on.
- The volatility surfaces show a very steep short term structure, eventually flattening (unless $\lambda = 0$). Improved cross sectonal calibration?

▲ @ ▶ < ∃ ▶</p>

- The process is non-Markovian and has a marked long-rang dependence (Leonenko et. al)
- When $\lambda = 0$ the Laplace inversion yielding to the model c.f. can be performed exactly, and involves the Mittag Leffler function
- The parameter λ when calibrated to option prices (remember!) gives the price of market latency risk, which is the compensation investor should require to face the risk an illiquid asset does not become liquid as time goes on.
- The volatility surfaces show a very steep short term structure, eventually flattening (unless $\lambda = 0$). Improved cross sectonal calibration?
5A. Time multiscaling

L. Torricelli (LMU)

March 28, 2018 24 / 34

 We can model transitions from illiquidity to liquidity at a fixed time scale, by introducing an exponential time ξ, of parameter β i.e.

$$\log S_t = X_{H_t} I_{\{t < \xi\}} + X_t I_{\{t > \xi\}}$$

which is analytically tractable because

$$\mathbb{E}[e^{iz\log(S_t)}] = \mathbb{E}[e^{iz\log(X_{H_t})}]e^{-\beta} + e^{t\psi_X(z)}(1 - e^{-\beta})$$

• Introduction of dependence between X_t and L_t is highly desirable but seems slightly problematic for martignale relations

 We can model transitions from illiquidity to liquidity at a fixed time scale, by introducing an exponential time ξ, of parameter β i.e.

$$\log S_t = X_{H_t} I_{\{t < \xi\}} + X_t I_{\{t > \xi\}}$$

which is analytically tractable because

$$\mathbb{E}[e^{iz\log(S_t)}] = \mathbb{E}[e^{iz\log(X_{H_t})}]e^{-\beta} + e^{t\psi_X(z)}(1 - e^{-\beta})$$

 Introduction of dependence between X_t and L_t is highly desirable but seems slightly problematic for martignale relations

Problem: to a stock with suspection one cannot apply directly the no-arbitrage principle because it is not traded at all times

Idea: separate fundamental value and market quote and require by market efficency that they coincide when the market is open.

- X_t is the trade noise and R_t the non-trade noise ("market gossip")
- ② L_t is a rate λ CPP with drift 1 and $exp \sim \beta$ jump sizes (linear time+exponential suspension waiting)
- 3 Define the fundamental value log $S_t = X_{H_t} + R_t + rt$
- Introduce a second time change: $\tau_t = L_{H_t-}$ is the last instant of quote update before t.
- ④ Define the quote process as the time change $Q_t = S_{ au_t}$

- X_t is the trade noise and R_t the non-trade noise ("market gossip")
- ② L_t is a rate λ CPP with drift 1 and $exp \sim \beta$ jump sizes (linear time+exponential suspension waiting)
- 3 Define the fundamental value log $S_t = X_{H_t} + R_t + rt$
- Introduce a second time change: $\tau_t = L_{H_t-}$ is the last instant of quote update before t.
- ④ Define the quote process as the time change $Q_t = S_{ au_t}$

• X_t is the trade noise and R_t the non-trade noise ("market gossip")

- L_t is a rate λ CPP with drift 1 and exp ~ β jump sizes (linear time+exponential suspension waiting)
- **③** Define the fundamental value log $S_t = X_{H_t} + R_t + rt$
- Introduce a second time change: $\tau_t = L_{H_t-}$ is the last instant of quote update before t.
- ④ Define the quote process as the time change $Q_t = S_{ au_t}$

- X_t is the trade noise and R_t the non-trade noise ("market gossip")
- L_t is a rate λ CPP with drift 1 and exp ~ β jump sizes (linear time+exponential suspension waiting)
- 3 Define the fundamental value log $S_t = X_{H_t} + R_t + rt$
- Introduce a second time change: $\tau_t = L_{H_t-}$ is the last instant of quote update before t.
- ④ Define the quote process as the time change $Q_t = S_{ au_t}$

- X_t is the trade noise and R_t the non-trade noise ("market gossip")
- L_t is a rate λ CPP with drift 1 and exp ~ β jump sizes (linear time+exponential suspension waiting)
- **③** Define the fundamental value log $S_t = X_{H_t} + R_t + rt$
- Introduce a second time change: $\tau_t = L_{H_t-}$ is the last instant of quote update before t.
- ④ Define the quote process as the time change $Q_t = S_{ au_t}$

- X_t is the trade noise and R_t the non-trade noise ("market gossip")
- L_t is a rate λ CPP with drift 1 and exp ~ β jump sizes (linear time+exponential suspension waiting)
- **③** Define the fundamental value $\log S_t = X_{H_t} + R_t + rt$
- Introduce a second time change: $\tau_t = L_{H_t-}$ is the last instant of quote update before *t*.

• Define the quote process as the time change $Q_t = S_{\tau_t}$

- X_t is the trade noise and R_t the non-trade noise ("market gossip")
- L_t is a rate λ CPP with drift 1 and exp ~ β jump sizes (linear time+exponential suspension waiting)
- **③** Define the fundamental value $\log S_t = X_{H_t} + R_t + rt$
- Introduce a second time change: $\tau_t = L_{H_t-}$ is the last instant of quote update before *t*.
- **(**) Define the quote process as the time change $Q_t = S_{\tau_t}$

- However one should not use Q_t as an underlying because (s)he loses interest comparing to S_t !
- Rather, the derivative should reference in case at matruity the asset is suspended, Q_t + interests: i.e. pay on the "forward" F_t

$$F_t = e^{r(t-\tau_t)}Q_t$$

- Note that e^{-rt}F_t being a martingale is equivalent to e^{-rτ_t}Q_t being a martingale → "stochastic discounting principle for assets with suspensions"
- λ and β are the parameters in H_t for the market price of suspension risk
- Volatility surface: λ , and β steepen further the short term skew \Rightarrow impact of trading halts on weekly option pricing!

- However one should not use Q_t as an underlying because (s)he loses interest comparing to S_t !
- Rather, the derivative should reference in case at matruity the asset is suspended, Q_t + interests: i.e. pay on the "forward" F_t

$$F_t = e^{r(t-\tau_t)}Q_t$$

- Note that e^{-rt}F_t being a martingale is equivalent to e^{-rτ_t}Q_t being a martingale → "stochastic discounting principle for assets with suspensions"
- λ and β are the parameters in H_t for the market price of suspension risk
- Volatility surface: λ , and β steepen further the short term skew \Rightarrow impact of trading halts on weekly option pricing!

- 4 週 1 - 4 三 1 - 4 三 1

- However one should not use Q_t as an underlying because (s)he loses interest comparing to S_t!
- Rather, the derivative should reference in case at matruity the asset is suspended, Q_t + interests: i.e. pay on the "forward" F_t

$$F_t = e^{r(t- au_t)}Q_t$$

- Note that e^{-rt}F_t being a martingale is equivalent to e^{-rτ_t}Q_t being a martingale → "stochastic discounting principle for assets with suspensions"
- λ and β are the parameters in H_t for the market price of suspension risk
- Volatility surface: λ , and β steepen further the short term skew \Rightarrow impact of trading halts on weekly option pricing!

- However one should not use Q_t as an underlying because (s)he loses interest comparing to S_t!
- Rather, the derivative should reference in case at matruity the asset is suspended, Q_t + interests: i.e. pay on the "forward" F_t

$$F_t = e^{r(t- au_t)}Q_t$$

- Note that e^{-rt}F_t being a martingale is equivalent to e^{-rτ_t}Q_t being a martingale → "stochastic discounting principle for assets with suspensions"
- λ and β are the parameters in ${\cal H}_t$ for the market price of suspension risk
- Volatility surface: λ , and β steepen further the short term skew \Rightarrow impact of trading halts on weekly option pricing!

- However one should not use Q_t as an underlying because (s)he loses interest comparing to S_t !
- Rather, the derivative should reference in case at matruity the asset is suspended, Q_t + interests: i.e. pay on the "forward" F_t

$$F_t = e^{r(t- au_t)}Q_t$$

- Note that e^{-rt}F_t being a martingale is equivalent to e^{-rτ_t}Q_t being a martingale → "stochastic discounting principle for assets with suspensions"
- λ and β are the parameters in H_t for the market price of suspension risk
- Volatility surface: λ , and β steepen further the short term skew \Rightarrow impact of trading halts on weekly option pricing!

 S_t . In red the suspension, fundamental value evolves only due to R_t

 Q_t and F_t . The discounted value $e^{-rt}Q_t$ is not a martingale, but $e^{-rt}F_t$ is.

 X_t CGMY, compared to F_t . $\lambda = 2$, $\beta = 50$, monthly. Excess skew observed.

 $\lambda=$ 12, $\beta=$ 50, monthly. Increasing jump frequency, further steepening

 $\lambda=$ 2, $\beta=$ 12, monthly. Increasing jump duration, same effect

 $\lambda = 2$, $\beta = 12$, yearly. Which seems to persist at longer maturities.

Consistently with behavioural models, volatility series of some asset show periods of staleness punctuated by bursts of activity (Ghoulmie et al. 2005)

 \Rightarrow Idea: use H_t to flatten volatiliy

Take X_t , v_t driven by an SDE involving correlated B.M W_t^1 , W_t^2 and an inverse subordinator to L_t to produce the time changed SDE for v_{H_t} .

• Time-changed stochastic calculus available (Kobayashi 2010);

 Feynman Kac theorems and series expressions for the density function p(t,x) of v_H, available (Leonenko, Meerschaert, Sirjoski 2013)

This model has long memory. Furthermore I expect it to be able to reproduce short ATM skew (sheer intuition, and comparison with the other two solutions) and maybe this can be quantitatively assessed using martingale expansions (Aloset al. 2006, Fukusawa 2010) \Rightarrow competitor of rough volatility?

Problem: analytical tractability?

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Consistently with behavioural models, volatility series of some asset show periods of staleness punctuated by bursts of activity (Ghoulmie et al. 2005)

\Rightarrow Idea: use H_t to flatten volatiliy

Take X_t , v_t driven by an SDE involving correlated B.M W_t^1 , W_t^2 and an inverse subordinator to L_t to produce the time changed SDE for v_{H_t} .

• Time-changed stochastic calculus available (Kobayashi 2010);

 Feynman Kac theorems and series expressions for the density function p(t,x) of v_H, available (Leonenko, Meerschaert, Sirjoski 2013)

This model has long memory. Furthermore I expect it to be able to reproduce short ATM skew (sheer intuition, and comparison with the other two solutions) and maybe this can be quantitatively assessed using martingale expansions (Aloset al. 2006, Fukusawa 2010) \Rightarrow competitor of rough volatility?

Problem: analytical tractability?

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Consistently with behavioural models, volatility series of some asset show periods of staleness punctuated by bursts of activity (Ghoulmie et al. 2005) \Rightarrow Idea: use H_t to flatten volatiliy Take X_t , v_t driven by an SDE involving correlated B.M W_t^1 , W_t^2 and an inverse subordinator to L_t to produce the time changed SDE for v_{H_t} .

Time-changed stochastic calculus available (Kobayashi 2010);
 Feynman Kac theorems and series expressions for the density function p(t, x) of v_H available (Leonenko, Meerschaert, Sirjoski 2013)

This model has long memory. Furthermore I expect it to be able to reproduce short ATM skew (sheer intuition, and comparison with the other two solutions) and maybe this can be quantitatively assessed using martingale expansions (Aloset al. 2006, Fukusawa 2010) \Rightarrow competitor of rough volatility?

Problem: analytical tractability?

イロト イポト イヨト イヨ

Consistently with behavioural models, volatility series of some asset show periods of staleness punctuated by bursts of activity (Ghoulmie et al. 2005) \Rightarrow Idea: use H_t to flatten volatiliy Take X_t , v_t driven by an SDE involving correlated B.M W_t^1 , W_t^2 and an inverse subordinator to L_t to produce the time changed SDE for v_{H_t} .

• Time-changed stochastic calculus available (Kobayashi 2010);

• Feynman Kac theorems and series expressions for the density function p(t, x) of v_{H_t} available (Leonenko, Meerschaert, Sirjoski 2013)

This model has long memory. Furthermore I expect it to be able to reproduce short ATM skew (sheer intuition, and comparison with the other two solutions) and maybe this can be quantitatively assessed using martingale expansions (Aloset al. 2006, Fukusawa 2010) \Rightarrow competitor of rough volatility?

Problem: analytical tractability?

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Consistently with behavioural models, volatility series of some asset show periods of staleness punctuated by bursts of activity (Ghoulmie et al. 2005) \Rightarrow Idea: use H_t to flatten volatiliy

Take X_t , v_t driven by an SDE involving correlated B.M W_t^1 , W_t^2 and an inverse subordinator to L_t to produce the time changed SDE for v_{H_t} .

• Time-changed stochastic calculus available (Kobayashi 2010);

• Feynman Kac theorems and series expressions for the density function p(t, x) of v_{H_t} available (Leonenko, Meerschaert, Sirjoski 2013)

This model has long memory. Furthermore I expect it to be able to reproduce short ATM skew (sheer intuition, and comparison with the other two solutions) and maybe this can be quantitatively assessed using martingale expansions (Aloset al. 2006, Fukusawa 2010) \Rightarrow competitor of rough volatility?

Problem: analytical tractability?

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Consistently with behavioural models, volatility series of some asset show periods of staleness punctuated by bursts of activity (Ghoulmie et al. 2005) \Rightarrow Idea: use H_t to flatten volatility

Take X_t , v_t driven by an SDE involving correlated B.M W_t^1 , W_t^2 and an inverse subordinator to L_t to produce the time changed SDE for v_{H_t} .

- Time-changed stochastic calculus available (Kobayashi 2010);
- Feynman Kac theorems and series expressions for the density function p(t, x) of v_{H_t} available (Leonenko, Meerschaert, Sirjoski 2013)

This model has long memory. Furthermore I expect it to be able to reproduce short ATM skew (sheer intuition, and comparison with the other two solutions) and maybe this can be quantitatively assessed using martingale expansions (Aloset al. 2006, Fukusawa 2010) \Rightarrow competitor of rough volatility?

Problem: analytical tractability?

(日) (同) (日) (日) (日)

Consistently with behavioural models, volatility series of some asset show periods of staleness punctuated by bursts of activity (Ghoulmie et al. 2005) \Rightarrow Idea: use H_t to flatten volatility

Take X_t , v_t driven by an SDE involving correlated B.M W_t^1 , W_t^2 and an inverse subordinator to L_t to produce the time changed SDE for v_{H_t} .

- Time-changed stochastic calculus available (Kobayashi 2010);
- Feynman Kac theorems and series expressions for the density function p(t, x) of v_{H_t} available (Leonenko, Meerschaert, Sirjoski 2013)

This model has long memory. Furthermore I expect it to be able to reproduce short ATM skew (sheer intuition, and comparison with the other two solutions) and maybe this can be quantitatively assessed using martingale expansions (Aloset al. 2006, Fukusawa 2010) \Rightarrow competitor of rough volatility?

Problem: analytical tractability?

A D > A B > A B > A B

Consistently with behavioural models, volatility series of some asset show periods of staleness punctuated by bursts of activity (Ghoulmie et al. 2005) \Rightarrow Idea: use H_t to flatten volatility

Take X_t , v_t driven by an SDE involving correlated B.M W_t^1 , W_t^2 and an inverse subordinator to L_t to produce the time changed SDE for v_{H_t} .

- Time-changed stochastic calculus available (Kobayashi 2010);
- Feynman Kac theorems and series expressions for the density function p(t, x) of v_{H_t} available (Leonenko, Meerschaert, Sirjoski 2013)

This model has long memory. Furthermore I expect it to be able to reproduce short ATM skew (sheer intuition, and comparison with the other two solutions) and maybe this can be quantitatively assessed using martingale expansions (Aloset al. 2006, Fukusawa 2010) \Rightarrow competitor of rough volatility?

Problem: analytical tractability?

A D > A B > A B > A B

Thanks for the attention

(input, crticism and cooperation appreciated!)

L. Torricelli (LMU)

Inverse Lévy subordination in option pricing

March 28, 2018 32 / 34

T. AND C. FRIES (2018).

An analytic pricing framework framework for assets with trading suspensions

SSRN

- M. M. MEERSCHAERT AND H.P. SCHEFFLER (2008), Triangular array limits for continuous random walks Stochastic Processes and their Applications
- E. SCALAS, R. GORENFLO AND F. MAINARDI (2000), Fractional calculus and continuous-time finance Physica A
 - M. MAGDIARZ (2009), Black-Scholes formula in subdiffusive regime Journal of Statistical Physics

References II

- M. MEERSCHAERT AND E. SCALAS (2004), Coupled continuous random walks in finance Physica A
- F. GHOULMIE, R.CONT AND J. P. NADAL (2005), Hetereogeniety and feedback in an agent-based market model Journal of Physics
- LEONENKO, M.M. MEERSCHAERT, R.L. SCHILLING AND A. SIKORSKII (2014),
 Correlation structure of time-changed Lévy processes
 Communications in Applied and Industrial Mathematics

LEONENKO AND M.M. MEERSCHAERT AND AND A. SIKORSKII (2013), Fractional Pearson Diffusions

Journal of Mathematical Analysis and Applications