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Abstract

In this paper we derive several pricing methods for a new kind of volatility-based

European-style option, the target volatility option (TVO). A TVO pays at maturity

a proportion of a vanilla European call option based on the ratio between a specified

target parameter σ and the average realised volatility of the underlying. Three main

techniques are proposed: a local at-the-money power series expansion; a Laplace and

Fourier transform method; approximations via uniform and L2 convergence of repli-

cating claims. Our results hold true in a stochastic volatility model under the usual

independence conditions. Numerical evidence supporting our results is provided.
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1 Preliminaries and assumptions

1.1 Introduction

Quadratic variation and volatility based derivatives trading first took off in the late nineties

following an unprecedented increase of implied volatility levels. Since then volatility prod-

ucts become a very liquid and widely traded instrument; from the market participants’

perspective volatility derivatives are to be used either to hedge away volatility risk or to

speculate on future realised volatility. As a result a wide literature on the subject arose,

(Carr and Madan [6], Fritz and Gatheral, [9], the book by Gatheral [10] and Carr and Lee

[4], just to list a few) and volatility derivatives became a very well understood product

relying on a solid theoretical basis.

A more recent innovation, dating back to the past few years, has been the introduction

of derivative products paying on an underlying traded asset and the realised volatility of the

asset itself. In other words the contingent claims associated with these derivatives are joint

functions of the asset value and the realised volatility of the asset throughout the life of the

contract. To our knowledge, a rigorous theory for pricing and hedging these instruments

has yet to be developed. Indeed, valuation of these products in the classical setting is, in

its full generality, a highly non-trivial problem. Risk-neutral expectations of such claims

depend on the joint distribution of two heavily mutually dependant variables, as the asset

and its quadratic variation are, even in the case in which simple uncorrelated dynamics are

assumed for the relevant processes.

Target volatility options, (TVO in short) introduced in 2008, represent one such a kind of

derivative. This contract is a volatility-based variation of a plain vanilla European option.

A target volatility call option is written on an underlying asset St and gives the buyer the

right to buy a certain fractional amount c of shares of St at a future date T for a price cK,

where K is some fixed strike price. The amount c of shares to be exchanged for cK is the

ratio of a specified constant σ, and the average realised volatility of St during the lifespan

of the contract, and it is a random variable.

The rationale behind the creation of target volatility options is better explained with an

example. Assume an investor believes that the market implied volatility for a given option

does not reflect his/her expectation of the future realised volatility of the underlying. In

particular, assume that the investor is of the view that the future realised volatility of the

stock will be lower than implied by option prices. Then he may enter a target volatility
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contract and choose the threshold σ̄ to be his/her prediction of the future (average) realised

volatility of the underlying. The price paid for the target volatility option is an (increasing)

function of σ̄ and will be typically lower than the corresponding vanilla contract. However,

if the investor’s prediction is correct the pay-off of the two options will be the same (see

Section 2 for details).

In this paper we begin to work on the problem of pricing this option in the risk-neutral

valuation setting. For simplicity we assume that no interest rates are paid in the market;

furthermore we assume independence between the quadratic variation and the underlying.

Even though this is a quite unrealistic assumption it is necessary to begin with it in our

study; under such an assumption we will be able to reduce the expected value of the option

as the expected value of a claim on the quadratic variation alone (Proposition 1.2). Having

done so, the cornerstone on claims on volatility laid by Carr and Lee ([4]) will lead us on

our way to pricing via replication through contingent claims on St.

After introducing the definitions and the setting in which we are going to work, we tackle

the problem in three different ways. In Section 2 we begin by observing that an at-the-

money TVO has nearly the same price as an European call option of constant volatility σ,

and then we deduce its value in a neighbourhood of S0 by expanding the payoff in its Taylor

series in K. In Section 3 we derive exact formulas for the Laplace and Fourier transforms

of claims approximating the option and then find the value via inversion. In Section 4 we

express the value as a limit of expectations of uniform and L2 sequences converging to the

claim. In Section 5 we give some numerical examples.

I would like to thank Giuseppe Di Graziano at Deutsche Bank AG Commodities Struc-

turing for providing me with all the necessary background and helping me throughout this

project.

1.2 The framework

Let us start by introducing the setting and definitions of our framework. The lifespan of

contracts runs in a bounded closed interval [0, T ], T < +∞ representing the maturity date.

Pricing is always referred to time 0 (initiation of the contract), even though by considering

conditional expectations most our results could be extended for time t > 0 evaluation. We

assume throughout that there exist riskless market securities (bonds) on which no interest

rate is paid.

Our market is represented by a filtered probability space (Ω,F ,Ft,P) satisfying the
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usual conditions. We assume that there exists a P-equivalent measure Q under which any

non-dividend-paying stock process St satisfies a stochastic equation of the form

dSt = σtStdWt, t ∈ (0, T ], S0 ∈ R+ (1.1)

for a Q-Brownian motion Wt and a stochastic process σt > 0 independent of Wt.

Unless specified otherwise we assume σt to be almost surely bounded in [0, T ]×Ω, that

is, there exists m > 0 such that

σt(ω) < m, (A)

for all t ∈ [0, T ] and all ω ∈ Ω outside a Q-null set.

σt is the volatility of St. Typically σt satisfies certain diffusion equations of the type

dσt = μt(σt, t)dt+ νt(σt, t)dZt, σ0 > 0 (1.2)

for Q-Brownian motion Zt independent of Wt, but more general settings are allowed.

Let Xt = log(St/S0). The realised quadratic variation (or realised variance) of Xt in

[0, T ] is

〈X〉T =
∫ T

0
σ2t dt. (1.3)

The realised volatility will thus be 〈X〉
1
2
T .

Definition 1.1. Let σ > 0 be a constant. A target volatility call option is the contingent

claim on St and 〈X〉t paying

H(ST ,K, 〈X〉T ) = σ

(
T

〈X〉T

) 1
2

(ST −K)
+ (1.4)

at time T . The constant σ is called the target volatility.

A target volatility put option is defined in a similar fashion. Note that as T tends to

zero H remains well defined by the mean integral Theorem and tends to the intrinsic value

σ(S0 −K)+/σ0.

The contract we are studying is a kind of European type call option, which pays at

maturity a proportion of the vanilla European call on the ratio of the average volatility

realised during the life of the contract, and the target volatility, our “bet” volatility level.

The aim of this paper is to provide some analytical and semi-analytical formulas for the
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time-0 value of (1.4) in the setting just presented. According to the risk-neutral pricing

formula this amounts to computing

E[H(ST ,K, 〈X〉T )] = E

[

σ

(
T

〈X〉T

) 1
2

(ST −K)
+

]

. (1.5)

Clearly in (1.5) and everywhere else the expectation is taken with respect to Q.

We are now going to analyse the equivalent payoff h(x) and its risk-neutral expectation

in greater detail.

1.3 Properties of the payoff

The first important remark about (1.4) is that even though it is a joint function of the

stock price and variance, it is of the form p(ST )q(〈X〉T ), for measurable functions p and q.

Indeed, when σt and Wt are independent, a standard conditioning argument ensures that

we can write (1.5) in a nicer equivalent way:

Proposition 1.2. Let σt be independent of Wt. Let C
BS(S0,K, x) be the Black-Scholes

price of the vanilla european call option of initial underlying value S0, strike K and total

realised variance x on [0, T ], that is

CBS(S0,K, x) = S0N (d
+(x))−KN (d−(x)) (1.6)

where N (∙) is the cumulative normal distribution and

d±(x) =
log(S0/K)± x/2

x1/2
. (1.7)

Then the function

h(x) = σ
√
T
CBS(S0,K, x)

x1/2
(1.8)

is such that

E[H(ST ,K, 〈X〉T )] = E[h(〈X〉T )]. (1.9)

Proof. Let

FσT = {σ
−1
t (B), B ∈ B([0, T ]), t ∈ [0, T ]} (1.10)

be the filtration generated by the process σt at time T . Conditioning H with respect of FσT

and taking the expectation we have

E



 σ
√
T

〈X〉
1
2
T

(ST −K)
+



 = E



E



 σ
√
T

〈X〉
1
2
T

(ST −K)
+

∣
∣
∣
∣ F
σ
T







 . (1.11)
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By FσT measurability the factor σ/〈X〉
1
2
T drops out of the inner term. Moreover independence

of Wt and Fσt implies that conditional on F
σ
T , the process Wt is still a Brownian motion,

and therefore at each time t, the random variable St/S0 conditional on FσT is log-normal

with known instantaneous volatility σt (see [11] for a precise account). Therefore we can

use the Black-Scholes formula for a call option to conclude

E



 σ
√
T

〈X〉
1
2
T

E[(ST −K)
+| FσT ]



 = E



 σ
√
T

〈X〉
1
2
T

CBS(S0,K, 〈X〉T )



 (1.12)

= E[h(〈X〉T )]. (1.13)

Under independence, the pricing problem has been therefore reduced to the pricing of

a claim on the stock quadratic variation only. Extensive treatment of this kind of claims

is given in Carr and Lee, [4]. Nevertheless, for h(x) as in (1.8), the results of [4] cannot

be directly applied in order to get a useful pricing formula. Indeed depending on the

parameters S0 and K, the function h(x) may or may not be bounded on the half real line,

thus not falling under the cases accounted there.

A further issue is that integrability conditions for h(〈X〉T ) may not hold for some ill-

behaved processes σt, as a consequence of the following Lemma:

Lemma 1.3. Let h(x) be as in (1.8). Then

lim
x→0+

h(x) =






0 if S0 < K,

σ
√
TS0/

√
2π if S0 = K,

O(x−1/2) if S0 > K.

(1.14)

Proof. Let S0 < K. If x → 0+, d+(x) and d−(x) tend both to −∞ and N (d±(x)) → 0.

The asymptotic series for N (z) as z → −∞ is

e(−z
2/2)

√
2π
(z−1 +O(z−2)) (1.15)

and so as x goes to 0 from the right

S0
N (d+(x))

x
1
2

=
S0√
2π
e−

d+(x)2

2

(
1

log(S/K) + x/2
+O(x1/2)

)

→ 0. (1.16)
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The same holds for KN (d−(x))/x1/2, and we have the first line of the claim. If S0 = K

then as x → 0+ the numerator of h(x) tends to 0 because N (d±(x)) = N (±x1/2/2) → 1.

The McLaurin series for N (z) in 0 is

N (z) =
1

2
+
1
√
2π
(z +O(z2)) (1.17)

therefore

h(x) =
σ
√
TS0

x1/2

(
N (x1/2/2)−N (−x1/2/2)

)
(1.18)

=
σ
√
TS0

x1/2
2

(
x1/2

2
√
2π

)

+O(x)→
σ
√
TS0√
2π

. (1.19)

Finally if S0 > K then N (d±(x)) → 1, the numerator remains bounded, and h(x)

diverges asymptotically as x−1/2.

The intuition behind this Lemma can be understood by looking directly at (1.4). If the

option begins out-of-the-money and the volatility is sufficiently small the payoff will not be

triggered, regardless of how big 1/〈X〉1/2T can get. On the other hand if the options begins

in-the-money then the difference between terminal stock and strike is going to be positive

for small values of volatility, while the inverse square root of the volatility diverges.

From Lemma 1.3 we see that if S0 > K, that is, the option is in-the-money, in principle

nothing ensures that the expectation in (1.5) exists. Therefore extra assumptions must be

made on σt for the value in (1.5) to be finite. For the purposes of this paper we will directly

assume σt to be such that

E[h(〈X〉T )] < +∞. (B)

For instance this is the case for numerous CIR volatility models with constant parameters

κ, θ, η (for the analytic formula of 〈X〉T in the CIR model see [7]). Intuitively for (B)

not to hold true we should have a degenerate process for the volatility σt “falling” in an

uncontrolled way around 0 , making (1.4) indefinitely big.

1.4 Fundamental results

Here we develop all the fundamental machinery for our proofs. The main references for this

material are the already memtioned paper by Carr and Lee [4], and the book by Gatheral

([10]).

First of all we are going to need the classic result on exponential claims. Since next we

are going to be interested in replication (Proposition 1.5) we give the full proof for time-t
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values of the payoff. Anyway, in the proofs throughout this paper we only make use of the

case t = 0.

Proposition 1.4. Let St and Xt as per our hypotheses and assume σt is independent of

Wt. For all λ ∈ C the following relation holds:

Et[e
λ(〈X〉T−〈X〉t)] = Et[e

p±(λ)(XT−Xt)], (1.20)

with

p±(λ) =
1

2
±

√
1

4
+ 2λ. (1.21)

In particular E[ep
±(λ)(XT−Xt)] < +∞, for all λ ∈ C.

Proof. As mentioned in Proposition 1.2, due to the independence of σt and Wt, the con-

ditional distribution of XT − Xt given FσT is normal with mean −(〈X〉T − 〈X〉t)/2 and

variance 〈X〉T − 〈X〉t. Hence, for all p ∈ C, if FWt is the filtration generated by Wt

Et
[
ep(XT−Xt)

]
= Et

[
E
[
ep(XT−Xt)|σ(F σT ,F

W
t )
]]
= Et

[

e

(
p2

2
− p
2

)
(〈X〉T−〈X〉t)

]

(1.22)

= Et
[
eλ(〈X〉T−〈X〉t)

]
. (1.23)

having set λ = p2/2 − p/2. We deduce that if λ ∈ C is given, by choosing p to be any of

the roots of this equation (1.20) holds. The second claim is a direct consequence of (A).

Remark 1.1. If for λ ∈ R and t = 0 we denote by L〈X〉T (λ) the Laplace transform of

the distribution of 〈X〉T and by LXT (λ) the Laplace transform of the distribution of XT .

Proposition 1.4 says that

L〈X〉T (−λ) = LXT (−p
±(−λ)). (1.24)

This means that any exponential claim f(〈X〉T ) = eλ〈X〉T on the quadratic variation can

be priced directly if an analytic closed formula for the Laplace transform of XT is known.

Conversely the distribution function of 〈X〉T is completely determined by the time t prices

of the claim (ST /S0)
p±(λ), which in turn, by Proposition 1.6 below, can be determined

exactly by looking at the spot prices of the European put and call options.
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Remark 1.2. As stressed in [4], perhaps an even more interesting reading of Proposition

1.4 is that it effectively allows one to reduce any exponential claim eλ〈X〉T on the quadratic

variation 〈X〉T to the power payoff g(ST ) = (ST /S0)p
±(λ) on ST . That is, the pricing of

the path dependent claim f has been reduced to pricing the function g of the terminal stock

price alone. Even though the distribution of ST is not known, pricing of g(ST ) is always

possible by replicating ST via Proposition 1.6.

This approach to pricing is both robust and non-parametric. By robust it is meant

that it is valid for all stock price process independently of the class of the processes σt

assumed for the volatility (local volatility, full stochastic volatility, Lévy processes); by

non-parametric that (under our assumptions) we do not need to specify and calibrate the

parameters driving σt.

For exponential claims one can also exhibit an explicit dynamic hedging strategy for

the derivative. We have the following:

Proposition 1.5. Under the assumptions of Proposition 1.4 the claim eλ〈X〉T is replicated

by the self-financing portfolio consisting of

eλ〈X〉t

S
p
t

p-power claims on St,

−peλ〈X〉tEt[S
p
T ]

S
p+1
t

shares, and

peλ〈X〉t

S
p
t

Et[S
p
T ] cash.

(1.25)

Proof. At each time t we have the value

eλ〈X〉t

S
p
t

Et[S
p
T ]− pe

λ〈X〉t Et[S
p
T ]

S
p+1
t

St +
peλ〈X〉tEt[S

p
T ]

S
p
t

=
eλ〈X〉tEt[S

p
T ]

S
p
t

(1.26)

= Et[e
λ〈X〉T ], (1.27)

by use Proposition 1.4 in the last equality. Therefore the portfolio replicates the value of

the option. To see the self-financing condition set Pt = eλ〈X〉t/S
p
t and Vt = Et[S

p
T ]. By

means of the product rule and since dPt = −pVtdSt/St we have

d(PtVt) =PtdVt + VtdPt + d〈P, V 〉t (1.28)

=PtdVt −
pPtVt

St
dSt + d〈P, V 〉t. (1.29)
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where d〈P, V 〉t has finite variation. But now PtVt = Et[eλ〈X〉T ] is a martingale, and the

stochastic integrals in dVt and in dSt are local martingales because both Vt and St are

martingales. The only possibility is then d〈P, V 〉t = 0. Since there is no market drift, the

cash account Bt is the constant process and dBt = 0. Therefore

d(PtVt) = PtdVt −
pPtVt
St

dSt (1.30)

= PtdVt −
pPtVt
St

dSt + pVtPtdBt. (1.31)

The portfolio instant change is only due to change in value of the p-power claim, of the

underlying, and of the money account.

Before moving on we remind the pricing Theorem of decomposition into put and calls

cited in Remark 1.2, which first appeared in [3].

Proposition 1.6. Let St be as in our assumptions, and G ∈ C2([0,∞),R). Assume

European call and put Options of all strikes are traded for each maturity date T . De-

note PBS(S0,K) and C
BS(S0,K) the Black-Scholes values respectively of vanilla European

puts/calls of strike K and initial spot price S0. Then

E[G(ST )] = G(S0) +
∫ S0

0
PBS(S0,K)G

′′(K)dK +

∫ ∞

S0

CBS(S0,K)G
′′(K)dK. (1.32)

That is to say, every claim on ST can be replicated as a continuous portfolio of puts, puts

and calls, or calls (depending upon S0 > K, S0 = K, or S0 < K) of all possible strikes K,

each of position G′′(K), plus a fixed position of G(S0) in cash.

Proofs can be found in [6] and [10]. The assumption that K can tend to infinity is

justified by the fact that in practice options can be traded at a sufficiently large number of

strikes for (1.6) to represent a good approximation for the real price.

2 At-the-money Taylor expansion

2.1 Motivation

In this Section we show that in a first approximation the at-the-money price of a target

volatility option price is basically that of an European option of constant volatility σ. We

then move on to study changes in value of the option for strike oscillations close to S0, by

using a Taylor series expansion of the Black-Scholes formula.

12



Let us consider the at the money value H(S0, S0, 〈X〉T ) from (1.4). Via (1.9) we can

write its initiation value as

E[h(〈X〉T )] = E



σ
√
T
CBS(S0, S0, 〈X〉T )

〈X〉
1
2
T



 (2.1)

where CBS(S0, S0, 〈X〉T ) is the at-the-money Black-Scholes value of an European Call of

volatility 〈X〉
1
2
T . A very accurate estimate of such a value is given by the well known

Bachelier approximation (recall that 〈X〉
1
2
T is the total volatility accumulated during the

process)

CBS(S0, S0, 〈X〉T ) ≈ S0

√
〈X〉T
2π

(2.2)

which reduces (1.9) to

E[h(〈X〉T )] ≈ S0σ

√
T

2π
. (2.3)

Again, the Bachelier estimate again sets (2.3) to be roughly CBS(S0, S0, σ
2T ).

This comes down to one of the main motivations for the option we are studying. A

target volatility contract is a financial product whose at-the-money value is closely priced

by a simple Black-Scholes valuation of volatility σ, however uncertain the market volatility

scenario may be.

The chosen volatility parameter σ, once fed in the Black-Scholes formula, has therefore

the effect of setting the level of the price the counterparty is willing to pay for an at-the-

money option.

Next, we want to move away from S0 and explore the change in the pricing of this option

for small movements of K around S0. In doing so is just natural considering the Taylor

expansion of the claim (1.8) in K, which only involves the expansion of the Black-Scholes

formula appearing in the numerator.

A remarkable feature of such expansion is that, as a function of variance, it consists of

a sum of terms each involving an exponential function multiplying an inverse root. If we

center it around the at the money point S0 the dependence on the further factor log(S0/K)

disappears and we are left with just a sequence of claims depending only on the realised

variance.

Hence the approach will be that of expressing the payoff h as a limit of a converging

sequence hε, and then expand in the Taylor power series around S0 every element of this

sequence. The coefficients of the series will turn out to be single claims on the variance
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which we can replicate exactly by claims on ST : this is to say that for any claim f on the

variance there exists a claim F such that

E[f(〈X〉T )] = E[F (ST )]. (2.4)

Exactly as explained in Remark 1.1 for the exponentials, the value of the latter is then

by Proposition 1.6 determined uniquely by the time-0 prices of a portfolio of vanilla put

and call options.

2.2 Pricing the option

We prove now the pricing result as a limit of a converging sequence of prices. The symbol

≡ stands for equivalence modulo 2: k ≡ n means then that k has same parity as n.

Theorem 2.1 (At-the-money TVO pricing ). Let H(ST ,K, 〈X〉T ) be the payoff of the

a target volatility call option and let h(x) be defined in (1.9). For ε > 0 set Hε0 to be the

at-the-money value of the claim hε(〈X〉T ,K) with

hε(x,K) = h(x+ ε,K) = σ
√
T
CBS(S0,K, x+ ε)

(x+ ε)1/2
. (2.5)

Let r > 0 be the radius of analicity of h(x,K) in K. Then for all K such that |K − S0| < r

we have

E[H(ST ,K, 〈X〉T )] = lim
ε→0
Hε(ST /S0) (2.6)

where

Hε(ST , S0) = H
ε
0 +

σ
√
T

√
2π

(

E [F ε(ST , S0)] (K − S0) +

+
∞∑

n=0

(−1)n(K − S0)n+2

Sn+10 (n+ 2)!

n∑

k≡n

ck,nE
[
Gε− 1

8
, (n+2−k)/2(ST , S0)

]
)

(2.7)

for some constants ck,n, with

F ε(x, y) = −
1
√
2

∫ ∞

0
(x/y)p

±(−z−1/8) e
−ε(z+1/8)

(z + 1/8)1/2
dz, (2.8)

and, for s ∈ R and t > 0

Gεq,r(x, y) =
1

rΓ(r)

∫ ∞

0
(x/y)p

±(q+ε−z1/r)e−εz
1/r
dz. (2.9)

The exponents p± are defined in Proposition 1.4 and the series in (2.7) converges uniformly

in K.
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Remark 2.1. The number Hε(ST , S0) is nothing but an equivalent expression of the ex-

pectation of the at-the-money Taylor expansion of hε(x,K). Indeed this is represented by

a convergent series of the values of the claims F ε(x, y) and Gεq,r(x, y) on ST and S0 all

replicating the appropriate functions of 〈X〉T in the Taylor expansion.

We conclude that the time-0 value of a target volatility option is completely determine

by ST and S0. Moreover by effect of Proposition 1.6, F
ε and Gεq,r can be replicated by an

infinite strip of call and put options.

As a Corollary we have an effective approximation of the value of the option.

Corollary 2.2. Under the assumptions of Theorem (2.1), for ε > 0 sufficiently small and

n0 > 0 sufficiently large we have the following approximation for the value (1.5)

E[H(ST ,K, 〈X〉T )] ≈ C
BS(S0, S0, σ

2T ) +
σ
√
T

√
2π

(

E[F ε(ST , S0)](K − S0)

+

n0∑

n=0

(−1)n(K − S0)n+2

Sn+10 (n+ 2)!

∑

k≡n

ck,nE[G
ε
− 1
8
, (n+2−k)/2(ST , S0)]

)

. (2.10)

Proof. Fix ε > 0 such that Hε(ST /S0) is close to the option value as desired, and n0 such

that the partial sums up to n0 of the series in (2.7) achieves the desired accuracy. Then,

exactly as remarked in the previous subsection, applying twice Bachelier formula allows the

estimates

E[hε(〈X〉T )] =E

[

σ
√
T
CBS(S0, S0, 〈X〉T + ε)√

〈X〉T + ε

]

(2.11)

≈E

[

σ
√
T

S0

(〈X〉T + ε)
1
2

√
〈X〉T + ε
2π

]

(2.12)

≈CBS(S0, S0, σ
2T ). (2.13)

and the Corollary then follows by Theorem 2.1.

We break the proof of Theorem 2.1 in a series of Lemmas and Propositions. In first place

we would like to obtain the general formula for the n-th derivative of CBS with respect to

the strike. Such a derivative can be expressed as the derivative of a put option value with

respect to price, with strike and price inverted. Hence, one has for the first two orders the

familiar formulas for the delta and gamma of a put option in the variable K.

C ′(K) = −N (d−(K)) (2.14)
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and

C ′′(K) =
1

K〈X〉
1
2
T

φ(d−(K)). (2.15)

Here and everywhere else φ(x) = e−x
2/2/
√
2π.

In [8] Estrella derives an explicit formula for the higher order derivatives of a vanilla

European call option. This formula applies in our context, because all the derivatives of

call and put options of order higher than 1 coincide.

Lemma 2.3. Let n ≥ 0. Denote Cn+2(S0) the n+2-th derivative of CBS(S0,K, 〈X〉T ) with

respect to K evaluated at S0. Then

C(n+2)(S0) =
(−1)n
√
2πSn+10

∑

k≡n

ck,n
e−

〈X〉T
8

〈X〉
n+1−k
2

T

. (2.16)

Proof. From [8], setting σ = 〈X〉
1
2
T , and h = d

−(K) we have

Cn+2(K) =
(−1)nPn(h)φ(h)
(S0σ)n+1

(2.17)

for polynomials Pn of degree n satisfying the recursive relation

Pn(h) = (h+ nσ)Pn−1(h)− P
′
n−1(h). (2.18)

Since we are developing at-the-money we want to compute this in K = S0, that is, for

h = σ/2. Starting by induction from P0 = 1 it is easy to see from (2.18) that all of the

monomials appearing in the polynomial Pn(σ) are those having same parity as n. This

is because both multiplying Pn−1(σ/2) by (2n + 1)σ/2 and differentiating it changes the

parity of the exponents of such monomials according with that of n. Thus dividing out

Pn(σ/2) by the factor σ
n+1 yields a sum of rational functions in σ all having odd negative

exponent: we then have

C(n+2)(S0) =
(−1)n

Sn+10

∑

k≡n

ck,n
σkφ(σ/2)

σn+1
(2.19)

where ck,n are the coefficients given by (2.18). Substituting back σ = 〈X〉
1
2
T and

φ(h) = exp(−〈X〉T /8)/
√
2π) (2.20)

we see that (2.17) is equivalent to
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C(n+2)(S0) =
(−1)n
√
2πSn+10

∑

k≡n

ck,n
e−

〈X〉T
8

〈X〉
n+1−k
2

T

. (2.21)

Lemma 2.3 provides the explicit decomposition for the payoff of an European call in the

series of elementary functions of the variance we are going to need. These claims to appear

in Theorem 2.1 “shifted ” by ε; the next step is then too compute explicitly the risk-neutral

expectation of this shifted claims.

Proposition 2.4. Let q ∈ R, r > 0, ε > 0 and

gεq,r(x) =
eq(x+ε)

(x+ ε)r
. (2.22)

Let 〈X〉T be the realised volatility of St at time T . Then

E[gεq,r(〈X〉T )] = E[G
ε
q,r(ST , S0)] (2.23)

where

Gεq,r(x, y) =
1

rΓ(r)

∫ ∞

0
(x/y)p

±(q+ε−z1/r)e−εz
1/r
dz (2.24)

and p± is as in Proposition 1.4.

Proof. Let us consider the identity (cf. [2])

1

ab
=

1

aΓ(a)

∫ ∞

0
e−bz

1/r
dz a, b > 0. (2.25)

By Proposition 1.4, and assuming we can apply Fubini’s Theorem we have

E

[
e(q+ε)〈X〉T

(〈X〉T + ε)r

]

=E

[
1

rΓ(r)

∫ ∞

0
e(q+ε)〈X〉T−z

1/r(〈X〉T+ε)dz

]

(2.26)

=
1

rΓ(r)

∫ ∞

0
E
[
e(q+ε−z

1/r)〈X〉T
]
e−εz

1/r
dz (2.27)

=
1

rΓ(r)

∫ ∞

0
E

[(
ST
S0

)p±(q+ε−z1/r)]

e−εz
1/r
dz (2.28)

=E

[
1

rΓ(r)

∫ ∞

0

(
ST
S0

)p±(q+ε−z1/r)
e−εz

1/r
dz

]

. (2.29)

Indeed, being σt bounded by assumption (A), so is 〈X〉T , say 〈X〉T < M , for M > 0. Thus

∀z > 0

E
[
e(q+ε)〈X〉T−z

1/r〈X〉T
]
< E

[
e(q+ε)〈X〉T

]
< e(q+ε)M . (2.30)
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Therefore the integral in (2.27) converges because so does e−εz
1/r
; this justifies the first

application of Fubini. Secondly observe that p± as a function of z is a complex exponent

of constant norm, which means that |(ST /S0)p
±(q+ε−z1/r)| ≤ |ST /S0|c = ecXT for some

positive real constant c. Therefore if C =
∫∞
0 e−εz

1/r
dz then

E

[
1

rΓ(r)

∫ ∞

0

(
ST
S0

)p±(q+ε−z1/r)
e−εz

1/r
dz

]

≤ E

[
1

rΓ(r)
ecXTC

]

(2.31)

and the last quantity is finite by Proposition 1.4. Having proved the convergence of this

integral, the last equality is a fortiori established and this yields the result.

Combined with Lemma 2.3, Proposition 2.4 effectively reduces in the form (2.4) the

claims on the variance of order equal or greater than two, but leaves out the first order.

This is precisely what the next Proposition takes care of:

Proposition 2.5. Let ε > 0 and

f ε(x) = −
√
2π
N (−

√
x+ ε)

√
x+ ε

. (2.32)

Then

E[f ε(〈X〉T )] = E[F
ε(ST , S0)] (2.33)

where F ε is that defined in equation (2.8)

Proof. Let t(z) = 1/
√
π(z + 1/8). It is easy to verify that the Laplace transform of t(z)

Lt(x) =
ex/8
√
x
erfc(

√
x/8) (2.34)

where

erfc(x) =
2
√
π

∫ ∞

x

e−u
2
du. (2.35)

Now clearly we have the relations

N (−
√
x/2) = 1−N (

√
x/2) =

1

2
erfc(

√
x/8). (2.36)

Multiplying both sides of (2.36) by ex/8/
√
x and using (2.34) yields

N (−
√
x/2)ex/8
√
x

=
1

2
Lt(x) (2.37)

that is

18



N (−
√
x/2)

√
x

=
e−x/8

2
Lt(x) =

1

2
√
π

∫ ∞

0

e(−z−1/8)x

(z + 1/8)1/2
dz. (2.38)

Therefore if we set x = 〈X〉T + ε we obtain

N (−
√
〈X〉T + ε/2)√
〈X〉T + ε

=
1

2
√
π

∫ ∞

0

e(−z−1/8)〈X〉T e−ε(z+1/8)

(z + 1/8)1/2
dz. (2.39)

When taking the expectation the usual Fubini argument applies because by assumption (A)

E
[
e(−z−1/8)〈X〉T

]
is bounded and the non-random part is integrable in z. After applying

Proposition 1.4 we can take the expectation out of the integral because (ST /S0)
p±(−z−1/8)

is bounded and e−ε(z+1/8)/
√
z + 1/8 integrable. This means

E

[
N (−

√
〈X〉T + ε/2)√
〈X〉T + ε

]

=
1

2
√
π

∫ ∞

0
E
[
(ST /S0)

p±(−z−1/8)
] e−ε(z+1/8)

(z + 1/8)1/2
dz (2.40)

=
1

2
√
π
E

[∫ ∞

0

(ST /S0)
p±(−z−1/8)e−ε(z+1/8)

(z + 1/8)1/2

]

dz (2.41)

and the statement follows by multiplication of both sides by −
√
2π.

We are now ready for the proof of the main Theorem.

Proof of Theorem 2.1. By continuity of h we have

lim
ε→0

hε(〈X〉T ,K) = h(〈X〉T ,K) (2.42)

almost surely; the random variables on the left side are all L1(Q), and so is the right side

by assumption (B). It is easy to see that depending upon K ≤ S0 or K > S0 the function

hε(x,K) is either monotone increasing or decreasing in x; therefore by the Dominated and

Monotone convergence Theorems, and Proposition 1.2

lim
ε→0

E[hε(〈X〉T )] = E[h(〈X〉T )] = E[H(ST ,K, 〈X〉T )]. (2.43)

If r > 0 is the radius of analicity of the Black Scholes formula in K, we develop hε(x,K)

as a function of K in its Taylor series around S0. By virtue of (2.14) and Lemma 2.3, we

have, for all x > 0:
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hε(x,K) = hε0 +
σ
√
T

√
x+ ε

(

−N (−
√
x+ ε)(K − S0)

+
∞∑

n=0

(−1)n(K − S0)(n+2)

(n+ 2)!
√
2πSn+10

∑

k≡n

ck,n
e−

x+ε
8

(x+ ε)
n+1−k
2

)

(2.44)

=hε0 + σ
√
T

(
qε(x)
√
2π
(K − S0) +

∞∑

n=0

(−1)n(K − S0)(n+2)

(n+ 2)!
√
2πSn+10

∑

k≡n

ck,ng
ε
−1/8,(n+2−k)/2(x)

)

.

(2.45)

where hε0 = h
ε(x, S0). Then we calculate (2.45) in x = 〈X〉T and take the expectation. Being

every random variable involved L1(Q) it drops into the series; the proof is then complete

by applying Propositions 2.4 and 2.5.

Remark 2.2. If we have an explicit analytical formula for the Laplace transform of 〈X〉T

which is also integrable, then we may find the pricing formula simply by computing integrals

in the form
1

rΓ(r)

∫ ∞

0
E
[
e(q−z

1/r)〈X〉T
]
dz (2.46)

and

−
1
√
2

∫ ∞

0

E
[
e(−z−1/8)〈X〉T

]

(z + 1/8)1/2
dz (2.47)

These are analogous to those of Propositions 2.4 and 2.5 but are deduced from the coeffi-

cients of the Taylor power series in K around S0 of the function h(x) itself. The integrability

of the Laplace transform of the distibution of 〈X〉T indeed provides a sufficient condition

for direct manipulation of the payoff, without relying on a convergence argument. This is

the setting in which we numerically implemented our results (Section 5).

3 Log-strike Fourier and Laplace transform method

We will now derive exact formulas for both the Fourier and the Laplace transform for the

TVO price, as expressed in the log-strike price variable. Once we have these, the value of

the option is then obtained by numerically inverting the transform and undoing the variable

change.

As opposed to what has been performed in Section 2, the formulas that we will obtain

are exact ; nevertheless a numerical inversion of the Fourier transform is needed to determine

the actual option value.
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We are going to calculate the transforms via the same methodology involved by Proposi-

tion 1.4 which has been used in the previous part. Anyway the final form for the transforms

of the option value we are going to show requires evaluation of an expectation of an infinite

one parameter-family of claims, one for each parameter.

The formal arguments underlying the two derivations are indeed very similar. We are

presenting both because they have been designed for different numerical inversion algo-

rithms. Inversion of the Fourier method is to be performed with the classic FFT inversion

of [5] , whereas an excellent algorithm for the Laplace inversion is that of Abate-Whitt, [1].

3.1 The Fourier transform

In this subsection we will obtain our own formula for the inversion by closely following the

steps of [5]. As was the case in Section 2 for technical reasons of integrability, in general

we cannot work directly on the payoff defined in (1.4) but instead produce a series of claim

converging to H in L1(Q).

For ε ≥ 0 call

V ε(K) = E[H(ST ,K, 〈X〉T + ε)]. (3.1)

So that V 0 is the value of the option. Set κ = logK and YT = logST . The first important

remark to do is that V ε(K) is not directly integrable as a function of the log strike. In

order to achieve (square) integrability we must work instead on a modified version of the

payoff by choosing parameter α > 0 and multiply V ε by the dampening factor eακ so to

define the dampened log-strike value of V ε(K) as

vεα(κ) := e
ακV ε(eκ) = σ

√
TE

[
eακ

(〈X〉T + ε)
1
2

(eYT − eκ)+
]

(3.2)

We first calculate the Fourier transform, square integrability of vεα(κ) will follow.

Proposition 3.1. Let vεα(κ) be as in (3.2). Then its Fourier transform

v̂εα(t) =

∫ ∞

−∞
eitκvεα(κ)dκ (3.3)

satisfies, ∀t ∈ R.

v̂εα(t) =
2S
(α+it+1)
0 σ

√
T

(α+ it+ 1)(α+ it)
√
π

∫ ∞

0
E

[(
x

y

)p±(λt(z))
]

e−εz
2
dz (3.4)

where

λt(z) = −z
2 +
1

2

(
(α+ it+ 1)2 − (α+ it+ 1)

)
. (3.5)
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Proof. Assuming we can use Fubini’s Theorem

v̂α(t) =

∫ ∞

−∞
eitκ σ

√
TE

[
eακ

(〈X〉T + ε)
1
2

(eYT − eκ)1I{κ<YT }

]

dκ (3.6)

=E

[
σ
√
T

(〈X〉T + ε)
1
2

∫ YT

−∞
eκ(α+it)+YT − eκ(α+it+1)dκ

]

(3.7)

=E

[
σ
√
T

(〈X〉T + ε)
1
2

(
eYT (α+it+1)

α+ it
−
eYT (α+it+1)

α+ it+ 1

)]

(3.8)

=E

[
σ
√
T

(〈X〉T + ε)
1
2

eYT (α+it+1)

(α+ it+ 1)(α+ it)

]

. (3.9)

By conditioning (3.9) with respect to FσT we can disentangle the variables YT and 〈X〉T

and express the term in the expectation as a function of the quadratic variation alone.

Indeed being 〈X〉T measurable with respect of FσT and YT independent of it

E

[
σ
√
T

(〈X〉T + ε)
1
2

eYT (α+it+1)

(α+ it+ 1)(α+ it)

]

(3.10)

=E

[

E

[
σ
√
T

(〈X〉T + ε)
1
2

eYT (α+it+1)

(α+ it+ 1)(α+ it)

∣
∣
∣
∣F
σ
T

]]

(3.11)

=E

[
S
(α+it+1)
0 σ

√
T

(〈X〉T + ε)
1
2

E

[
eXT (α+it+1)

(α+ it+ 1)(α+ it)

∣
∣
∣
∣F
σ
T

]]

(3.12)

=
S
(α+it+1)
0 σ

√
T

(α+ it+ 1)(α+ it)
E

[
eη
t
α〈X〉T

(〈X〉T + ε)
1
2

]

. (3.13)

In the last equality has again been used the fact that St is log-normal under conditioning

by the filtration generated by σt. Moreover, we have set

ηtα =
1

2

(
(α+ it+ 1)2 − (α+ it+ 1)

)
. (3.14)

As in Proposition 2.1 we can re-write the term under the expectation in (3.13) by

using the inverse-root integral representation (2.25) with b = 1/2. Fubini’s Theorem and

Proposition 1.4 then yield

v̂α(t) =
2S
(α+it+1)
0 σ

√
T

(α+ it+ 1)(α+ it)
√
π

∫ ∞

0
E
[
e−z

2(〈X〉T+ε)+ηtα〈X〉T
]
dz (3.15)

=
2S
(α+it+1)
0 σ

√
T

(α+ it+ 1)(α+ it)
√
π

∫ ∞

0
E

[(
ST
S0

)p±(λt(z))
]

e−εz
2
dz (3.16)
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where p±(z) is that defined in Proposition 1.4 and λt(z) = −z2+ηtα. All of the applications

of Fubini are then justified because of (A) and the integrability of e−εz
2
, and this completes

the proof.

As a consequence, by inversion we have a pricing result for the claim V (K):

Corollary 3.2. The value of the claim V 0(K) of a target volatility option can be computed

as

lim
ε→0

V ε(K) = V 0(K) (3.17)

where

V ε(K) =
1

2πKα

∫ ∞

−∞
e−it logK v̂εα(t)dt (3.18)

=
1

πKα

∫ ∞

0
e−it logK v̂εα(t)dt. (3.19)

Proof. From (3.16) we immediately see (as usual by Proposition 1.4 and assumption (A)

that the integral part of the transform stays bounded, while the denominator is o(t2) as

t → ±∞. This shows that v̂εα(t) ∈ L
2, which implies that vεα(κ) is L

2 as well, so the first

equality follows by applying the inversion Theorem and setting back K = eκ. The second

is because being V ε(K) real, the function v̂α(t) must be odd in his imaginary part and even

in its real part, so we can write the integral as twice the integral on the half real line.

Observe finally that as ε→ 0, the function V ε(K) tends increasingly to V (K) hence by

Monotone convergence it is vεα(κ)→ vεα(κ) which directly implies 3.17.

From all we have just seen we have one free parameter α > 0 which is not given by the

problem, and can be chosen as we want. As explained in [5] setting this parameter in a

sensible way is crucial to obtain accuracy and efficiency in the inversion.

We now illustrate the very similar Laplace transform method.

3.2 The Laplace transform

Instead of considering the Fourier transform of a modified payoff of the call option one can

think of directly performing the Laplace transform of H in the log-strike. This is not going

to be possible because a call TVO, exactly like a vanilla call option, is not integrable in

logK. What we are going to do is then the following: first we do the Laplace transform of

a TVO put option, invert it, and then work back the value of the call option via call/put
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parity. But first we need to make clear what we mean by put call/parity with and what is

a forward contract on the inverse realised volatility:

Definition/Proposition 3.1. A target volatility forward of strike K on an underlying

asset St is the contract paying at time T

Fwd(ST ,K, 〈X〉T ) = σ

(
T

〈X〉T

) 1
2

(S0 −K) (3.20)

and its time-0 value is

F 0wd(K) = σ
√
T (S0 −K)E



 1

〈X〉
1
2
T



 . (3.21)

Proof. Taking the risk-neutral expectation in (3.20) and conditioning by FσT we have

F 0wd(K) = σ
√
TE



 1

〈X〉
1
2
T

E[ST −K|F
σ
T ]



 (3.22)

= σ
√
T (S0 −K)E



 1

〈X〉
1
2
T



 (3.23)

and the claim then follows by Proposition 2.4.

Remark 3.1. By Proposition 2.4 we now exactly the value of F 0wd.

It is now immediate to see that the put/call parity for vanilla options implies a put

call/parity for TVOs, that is, if P (K) is the value of a put TVO and V (K) the value or a

call TVO then

V (K)− P (K) = Fwd(K). (3.24)

Also, as in Proposition 3.1 we have an expression for the Laplace Transform for the

modified TVO put value in the log-strike.

Proposition 3.3. Let P (K) be the value of a TVO put option in the strike K and ε > 0.

As (3.2) define, for Yt = logSt, K = log k, and α ∈ C with Re(α) > 1

pε(κ) = P ε(eκ) = E

[
σ
√
T

(〈X〉T + ε)1/2
(eκ − eYT )+

]

. (3.25)

Then

Lpε(α) =
2S
(1−α)
0 σ

√
T

(α− 1)α
√
π

∫ ∞

0
E

[(
x

y

)p±(λt(z))
]

e−εz
2
dz. (3.26)

where

λt(z) = −z
2 +
1

2

(
α2 − α

)
. (3.27)
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Proof. Firstly, observe that the necessary integrability condition holds true whenever the

real part of the Laplace parameter α is bigger than 1, and therefore the Laplace transform

Lεp(α) of pε(κ) is well defined for all α ∈ C such that Re(α) > 1.

The derivation of (3.26) is formally similar to that of equation (3.4) of Proposition 3.1:

one integrates then uses the usual conditioning argument to obtain

Lεp(α) =
∫ +∞

1
e−ακ σ

√
TE

[
1

(〈X〉T + ε)
1
2

(eκ − eYT )1I{κ>YT }

]

dκ (3.28)

=E

[
σ
√
T

(〈X〉T + ε)
1
2

∫ +∞

YT

eκ(1−α) − e−ακ+YT dκ

]

(3.29)

=E

[
σ
√
T

(〈X〉T + ε)
1
2

(
eYT (1−α)

1− α
−
eYT (1−α)

α

)]

(3.30)

=E

[
σ
√
T

(〈X〉T + ε)
1
2

eYT (1−α)

(α− 1)α

]

(3.31)

=E

[

E

[
σ
√
T

(〈X〉T + ε)
1
2

eYT (1−α)

(α− 1)α

∣
∣
∣
∣F
σ
T

]]

(3.32)

=
S
(1−α)
0 σ

√
T

(α− 1)α
E

[
eηα〈X〉T

(〈X〉T + ε)
1
2

]

(3.33)

where ηα =
1
2(α

2−α). The claim follows again by writing the integral representation of the

square root for (3.33) and bringing the expectation inside the resulting integral by means

of assumption (A).

Inverting the transform and using the put/call parity we have our result:

Corollary 3.4. The price V (K) of a TVO call option as dependent of the strike K is given,

for all c > 1, by

V (K) = F 0wd(K) + lim
ε→0

1

2πi

∫ c+i∞

c−i∞
eα logKLεp(α)dα. (3.34)

Proof. Let us write the put/call parity formula (3.24) for K = eκ and express p(κ) as a

limit of pε(κ). If c > 1 the function Lεp(α) has no poles, and we can then write pε(K) as

the Bromwhich contour integral of Lεp(α). By changing to the variable K the Corollary

follows.
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4 Uniform and L2 convergence

Applying the theory developed in [4], a third way to approach the problem of pricing TVOs

is that of writing the equivalent claim (1.8) as a limit in some suitable functional space.

An approximation of the price then naturally arises by considering the value of the n-th

element of this sequence.

By recalling Lemma 1.3, one sees that this idea is doomed to fail if applied straightfor-

wardly to h(x). This is because if the options begins in-the-money then h(x) is not bounded

around 0. However, we can still make use of the idea of modifying the claim a little bit

in a way that the new claim does not suffer of the same limitation of h(x), and yet it is

sufficiently close to it in value.

The advantage of this kind of approach is that it relies on much simpler and manageable

mathematical expressions, and we need not to compute hard integral transforms to find

prices, as we did previously. Moreover, an approximate replication of the TVO in a simple

portfolio of exponential claims on the variance (or, equivalently, power claims on the stock)

will be be possible.

The Banach spaces we are going to consider are both supported by the vector space of

continuous functions on the half real line decreasing to 0; one has the topology induced by

the uniform norm, the other that of the L2 norm.

4.1 Bernstein polynomials

Continuous real function on a compact set are known to be uniformly approximated by

some sequence of polynomials: this is the Weierstrass Theorem.

Theorem 4.1 (Weierstrass). Let f(x) be a continuous function on an interval [a, b], a, b ∈

R. There exists a sequence of polynomials Pn(x) such that Pn(x)→ f(x) uniformly in [a, b].

To construct explicitly such a sequence sequence typically one makes use of the Bernstein

polynomials. If in the above we chose a = 0, b = 1 then we have the more specific

Theorem 4.2 (Bernstein). Let f(x) be continuous function on [0, 1]. The Bernstein Poly-

nomials of f of order n in [a, b]

Bnf(x) =
n∑

k=0

f (k/n)

(
n

k

)

xk(1− x)n−k (4.1)

are a sequence of polynomials such that Bnf(x)→ f(x) uniformly in [0, 1].
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Proof. [12], Theorem 1.1.1.

Clearly proving the Bernstein Theorem amounts to proving the Weierstrass Theorem

because up to a transformation we can always assume we are in the compact [0, 1].

All of this being said, it is still unclear why uniform convergence of polynomials could

be applied to functions on an unbounded domain, as h(x) is.

Let us consider the Banach space C([0, 1], ‖ ‖∞) and let

Λ0 =

{

f : [0,+∞)→ R, such that lim
x→+∞

f(x) < +∞

}

. (4.2)

Then for all c > 0 the diffeomorphism

ψc : [0,+∞) → [0, 1]

x 7→ e−cx
(4.3)

pushes back to the linear isomorphism

ψ∗c : C([0, 1], ‖ ‖∞) → Λ0

f(x) 7→ f(ψc(x))
(4.4)

which naturally induces a Banach space structure on Λ0 and a corresponding Banach spaces

isomorphism. Bernstein Theorem then still holds true in Λ0; since h ∈ Λ0 this is precisely

what we will be using shortly in the main convergence result.

Again, recall that h(x) can be completed to a continuous function on [0,+∞) if and

only if S0 ≤ K; therefore we can find a pricing formula in terms of a convergent series of

claims for hε(x) instead and then let ε→ 0.

Proposition 4.3. Let hε(x) be defined (2.5) and let S0 ≤ K. We have

E[h(〈X〉T )] = lim
ε→0

E[hε(〈X〉T )] (4.5)

E[hε(〈X〉T )] = lim
n→∞

n∑

k=0

CnkE[Pk(〈X〉T )] =
n∑

k=0

CnkE [Pk(ST , S0)] (4.6)

with

Pk(x, y) = (x/y)
p±(−ck), (4.7)

Cnk =
k∑

j=1

(−1)k−jhε∗ (j/n)

(
n

k

)(
k

j

)

(4.8)

and

hε∗(x) = h
ε (− log x/c) . (4.9)
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Proof. The equation (4.5) is clear and has been already proven in Theorem (2.1), so we just

need to show (4.6).

Being hε(x) continuous on [0,+∞) and limx→∞ hε(x) = 0 we see that hε∗(x) is uniformly

continuous in [0, 1] and hε∗(0) = 0. But then by Bernstein Theorem

Bnh
ε
∗(y)→ hε∗(y) (4.10)

uniformly in [0, 1]. Therefore if y = e−cx equation (4.4) implies that

Bnh
ε
∗(e
−x)→ hε∗(e

−cx) = hε(x) (4.11)

uniformly in [0,+∞). Hence, since 〈X〉T > 0 and the payoff hε is integrable, the Uniform

Convergence Theorem yields

E[hε(〈X〉T )] = E
[
lim
n→∞

Bnh
ε
∗(e
−c〈X〉T )

]
= lim
n→∞

E
[
Bnh

ε
∗(e
−c〈X〉T )

]
. (4.12)

We must now just compute E
[
Bnh

ε
∗(e
−c〈X〉T )

]
. Indeed by the Newton binomial formula,

shifting the j index, and changing summation order

E
[
Bnh

ε
∗(e
−c〈X〉T )

]
=
n∑

j=1

hε∗ (j/n)

(
n

j

)

E
[
e−cj〈X〉T (1− e−c〈X〉T )n−j

]
(4.13)

=
n∑

j=1

hε∗ (j/n)

(
n

j

)

E

[

e−cj〈X〉T
n−j∑

k=0

(
n− j
k

)

(−1)ke−ck〈X〉T

]

(4.14)

=
n∑

j=1

hε∗ (j/n)

(
n

j

) n∑

k=j

(
n− j
k − j

)

(−1)k−jE
[
e−ck〈X〉T

]
(4.15)

=
n∑

k=1

k∑

j=1

hε∗ (j/n)

(
n

j

)(
n− j
k − j

)

(−1)k−jE
[
e−ck〈X〉T

]
(4.16)

and then (4.6) follows from
(
n
j

)(
n−j
k−j

)
=
(
n
k

)(
k
j

)
and Proposition 1.4.

Remark 4.1. Needless to say, all of the above equally applies to the function h(x) directly

in the case the options begins at-the-money or out-of-the-money. In this case an explicit

approximate hedge can be established for the option. For all fixed n one has just a linear

combination of exponential claims; such a portfolio can then be hedged as has been shown

in Proposition 1.5.

This Proposition enables an estimate of the option value by truncating the series in

(4.6) to the desired n. Acting on c varies the rate on n with which the algorithm converges.
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Also, by fixing n and choosing c < 1/8n, the approximation provided is given by a real

number, and this may be useful in numerical implementation.

Compared to those of previous sections, this calculation is very easy to perform. In fact,

we must just compute the n expectations of the claims e−k〈X〉T , the n(n − 1)/2 binomial

coefficients
(
n
k

)
,
(
k
j

)
and the n values hε∗(k/n).

Uniform convergence from Theorem 4.3 can also be brought into the picture allowing

an estimate of the speed of convergence with n of the Bernstein polynomials of hε∗(x). We

have the following general Proposition:

Proposition 4.4. Let f ∈ C1([0, 1]). Then if f ′(x) = df/dx

|f(x)−Bnf(x)| ≤
3

4
n−

1
2ω
f ′

[0,1](n
− 1
2 ) (4.17)

where, for D ⊂ R, g : R→ R, and δ > 0

ω
g
D(δ) = sup

|x−y|<δ
x,y∈D

|g(x)− g(y)| (4.18)

is the modulus of continuity of g in D.

Proof. [12] Theorem 1.6.2.

We can use this to get a bound for the error between hε and its approximation in (4.6),

thus obtaining an estimate for the rate of convergence to the price of the option.

Proposition 4.5. Let hε(x) be as in (2.5). Assume that S0 ≤ K, and let hε∗(x) be that of

Proposition 4.3. Then there exists C > 0 such that
∣
∣
∣
∣E[Bnh

ε
∗(e
−c〈X〉T )]− E[hε(〈X〉T )]

∣
∣
∣
∣ ≤

C

n
. (4.19)

Proof. (hε)′(x) = dh(x)/dx is bounded an after the transformation function so it is (h∗ε )
′(x).

Let c = sup[0,1] |(h
ε
∗)
′(x)|. Being (h∗ε )

′(x) differentiable it is in particular Lipschitzian of

order 1, and therefore we have

ω
(hε∗)

′

[0,1] (δ)(n
−1/2) ≤ cn−1/2, (4.20)

whence, by Proposition 4.4
∣
∣
∣
∣E[Bnh

ε
∗(e
−c〈X〉T )]− E[hε(〈X〉T )]

∣
∣
∣
∣ ≤ E

[
|Bnh

ε
∗(e
−c〈X〉T )− hε∗(e

−c〈X〉T )|
]

(4.21)

≤
3

4
n−

1
2ω
(hε∗)

′

[0,1] (n
− 1
2 ) ≤

3

4
cn−1. (4.22)
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In other words convergence of formula (4.6) is O(n−1). This is not extremely fast but

probably the best one could hope when dealing with Bernstein polynomials. Indeed, there

is strong evidence that

|Bnf(x)− f(x)| = o(n
−1) (4.23)

is false for all non-linear continuous functions f on a real domain (see [12], page 22).

4.2 L2 Projections

The last pricing methodology we are going to present is the L2-projections Theorem for

continuous payoffs on [0,+∞) of Carr and Lee, [4].

Similarly to the Bernstein approximation case, we intend to write the payoff h(x) as a

limit of an L2 (and uniformly) converging sequence, and then decompose the expectation

as a converging sequence of single replicating exponential claims. These claims are nothing

but the L2 projections of h on the span of a suitable subset of a basis of Λ0. Again, this can

be done directly only under the assumption S0 ≤ K; otherwise one considers what follows

as applied to the claims hε and has the corresponding approximate pricing.

We denote again by Λ0 the Banach space of continuous function on R+ having finite

limit. We have the following Proposition:

Proposition 4.6. Let h(x) in (1.8) be such that S0 ≤ K. Let μ be a finite measure on

R+ and P be the Q-distribution of 〈X〉T ; assume the Radon-Nikodym derivative dP/dμ is

L2(μ) and that P is absolutely continuous with respect of μ. Then for all c > 0 the solution

{an,k}k=1...n of the linear system

n∑

k=0

an,k〈e
−cjx, e−ckx〉 = 〈h(x), e−cjx〉, j = 0, . . . , n, (4.24)

where 〈, 〉 is the inner product in L2(μ), satisfies

E[h(〈X〉T )] = lim
n→+∞

n∑

k=0

an,kE[Pk(ST , S0)] (4.25)

with Pk(x, y) as in Proposition 4.3.

Proof. Let C = {1, x, . . . , xn, . . .} the usual basis for C([0, 1], || ||∞). For c > 0 the isomor-

phism ψ∗c of (4.4) maps C into the basis of Λ0

B = {1, e−cx, . . . , e−cnx, . . .}. (4.26)
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Being h ∈ Λ0, for all n let An be the L2 projection of h on the span of {1, . . . , e−cnx}, that

is

An =
n∑

k=0

〈h(x), e−ckx〉e−ckx (4.27)

and set an,k = 〈h(x), e−ckx〉. Being C dense in C([0, 1], || ||∞) then B is dense in Λ0 and so

it is in Λ0 with respect to the L
2(μ) norm. Hence,

lim
n→∞

An(x) = h(x) (4.28)

in (Λ0, || ||2). Pick then ε > 0 and n0 such that for all n > n0 it is ||h− An||2 < ε. Calling

C =
∫
R+(dP/dμ)dμ we have, by Cauchy-Schwartz inequality

E[h(〈X〉T )−An(〈X〉T )]
2 =

[∫ ∞

0

dP

dμ
(z)(h(z)−An(z))dμ(z)

]2
(4.29)

≤
∫ ∞

0

(
dP

dμ
(z)

)2
dμ(z)

∫ ∞

0
(h(z)−An(z))

2dμ(z) ≤ Cε2μ(R+). (4.30)

for all n > n0, which shows E[An(〈X〉T )] → E[h(〈X〉T )]. Applying Proposition 1.4 yields

(4.25). Moreover, for all j = 1, . . . , n it is

〈h(x), e−cjx〉 = 〈An(x), e
−cjx〉 =

n∑

k=0

an,k〈e
−cjx, e−ckx〉. (4.31)

As in the case of the Bernstein polynomials, everything boils down to the calculation of

certain constants an,k. An approximated solution to the system (4.24) could be obtained

by using least-square approximations on the regressors e−cjx of weight μ. Proposition 4.6

then gives us, under the constraints given in its assumptions, a certain degree of freedom

in the choice of such a weight. Again, varying c effects the speed of convergence.

5 Some numerical testing and conclusions

The pricing results have been tested with MATLAB in a typical Heston model scenario for

stochastic volatility, using as a benchmark a Monte Carlo simulation of order n = 10.000.

dSt = v
1/2
t StdWt, S0 = 100 (5.1)

with the underlying CIR process for the variance given by the SDE

dvt = κ(θ − vt) + ηv
1/2
t StdZt, v0 = 0.2, (5.2)
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Wt and Zt being independent Brownian motions. The mean reverting κ rate has been set

to 0.5, the mean reverting level θ is 0.2 and the volatility of volatility η equals 0.3.

We fix throughout a target volatility level σ = 0.1 and see how the Taylor approx-

imation, the Laplace transform and the uniform convergence perform for various strikes

and maturities. We also comment on the sensitivities of the various approximations to the

variation of K and T .

Table 1: An overview of the performance of the different methods, maturity T=1.

Strike 60 80 100 120 140

Taylor n=4 9.9064 6.4018 3.9878 2.4386 1.4575

Laplace transform 9.7790 6.3622 3.9565 2.4135 1.4719

Bernstein polynomial n=30 10.3676 6.6147 3.9558 2.3117 1.4011

Monte Carlo 9.7550 6.3512 3.9557 2.4132 1.4682

5.1 Taylor polynomials

The analytic expressions of Theorem 2.1 for Taylor polynomials in K up to order 4 are

considered. We first analyse the change in value of the TVO as a function of the strike K.

Figure 1: Plot in strike for maturity T=0.25.
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Figure 2: Plot in strike for maturity T=1.

50 60 70 80 90 100 110 120 130 140 150
-2

0

2

4

6

8

10

12

14

Strike

V
al

ue

 

 

ATM B-S in Target Volatility
n=1
n=2
n=3
n=4
Monte Carlo

Figure 3: Plot in strike for maturity T=5.
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In both cases T = 0.25 and T = 1 the approximations performs excellently. In figure

1 the approximation is slightly less accurate in the tail; the reason being that for T → 0
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the option value approaches its non-analytic intrinsic value and this results in diminished

accuracy away from a neighbourhood of S0.

For T = 5 performance is effected by the cumulation with T of a source of error. As

time progresses realised volatility constantly increases; having the the at-the-money Black

Scholes formula negative second derivative in volatility, a concavity correction starts to

show. When simulating a long term process extreme volatility events start to become more

likely and this correction effectively reduces the averaged value for h(x). This ultimately

results in the Monte Carlo curve of figure 3 being translated backwards respect to the

polynomial curves.

The Taylor pricing method shows in fact the asymptotic behaviour in maturity shown

in figure 4. Observe how the Monte Carlo simulation bends more rapidly than the Taylor

polynomials.

Figure 4: Plot of the value for increasing maturity of an out-of-the-money option, K=110.
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Following are some numbers from the graph; it is interesting to notice how the linear

approximation already achieves remarkable accuracy.
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Table 2: Values of the Taylor polynomials for T=1 compared to the Monte Carlo

simulation.

Strike ATM value n=1 n=2 n=3 n=4 Monte Carlo

90 3.9878 4.9568 5.0656 5.0711 5.0709 5.0550

95 3.9878 4.4723 4.4995 4.5002 4.5002 4.4714

100 3.9878 3.9878 3.9878 3.9878 3.9878 3.9566

105 3.9878 3.5032 3.5305 3.5298 3.5298 3.4985

110 3.9878 3.0187 3.1276 3.1221 3.1219 3.0898

5.2 Laplace transform

The inversion of Corollary 3.4 has been performed with the already mentioned algorithm of

Abate-Whitt ([1]), and figures have proven to be extremely precise. We include the graphs

in the strike variable for fixed maturities T = 0.5 and T = 3. A graph for fixed strike and

increasing maturity is also included.

Figure 5: Graph of the value against the strike, T=0.5.
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Figure 6: Graph for the value against the strike, T=3.
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Figure 7: ATM value for increasing maturity.
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Table 3: Values of the Laplace inversion method compared to the Monte Carlo simu-

lation, T=3.

Strike Inversion Monte Carlo

90 7.6715 7.6619

95 7.1843 7.1846

100 6.7389 6.7417

105 6.3286 6.3308

110 5.9473 5.9495

The validity of the formulas of subsection 3.2 is therefore confirmed for all strike and

maturity ranges.

5.3 Uniform convergence

Following are the figures for the uniform convergence of claims of Proposition 4.3. For short

maturities and low strikes the value of the option is rapidly decreasing becoming very steep

near 0, thus we need a high degree polynomial to obtain a good approximation, as is the

case of figure 9.

Figure 8: Plot for the value against the strike, T=0.5.
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Figure 9: Plot for the value against the strike, T=3.

60 70 80 90 100 110 120
0

2

4

6

8

10

12

14

16

18

Strike

V
al

ue

 

 

n=5
n=10
n=15
n=20
n=25
n=30
Monte Carlo

Figure 10: ATM values for increasing maturity.
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When maturity increases the price function smoothens out and convergence improves

resulting in great accuracy. We cannot expect anyway a polynomial of fixed degree to
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represent an equally good approximation for different maturities. As figure 10 shows, all

polynomials start to decline eventually, while the option value is increasing in T : this is

because the characteristic function of 〈X〉T in the CIR model tends to 0 when T → +∞.

Table 4: Bernstein polynomials compared to the Monte Carlo simulation, T=2.5.

Strike n=5 n=10 n=15 n=20 n=25 n=30 Monte Carlo

90 8.1430 7.4075 7.2448 7.1922 7.1692 7.1567 7.1373

95 6.9970 6.7454 6.6809 6.6594 6.6499 6.6447 6.6395

100 6.0604 6.1618 6.1702 6.1723 6.1733 6.1739 6.1790

105 5.3411 5.6558 5.7101 5.7281 5.7367 5.7416 5.7570

110 4.8056 5.2181 5.2959 5.3234 5.3369 5.3449 5.3658

5.4 Conclusions and future work

Several different solutions have been proposed for the TVO pricing problem, which can be

divided into three main categories

• Taylor polynomial approximation;

• Analytical expression for Fourier and Laplace transform and pricing via inversion;

• Approximations via converging sequences: uniform and L2;

Most of these methods have been closely examined and implemented numerically in a

concrete CIR stochastic volatility model and the figures confirm our theory.

Aspects that are currently under inspection and for which it is necessary to gain further

insight are:

1. behaviour of our formulas under presence of correlation between the underlying asset

and the volatility;

2. choice of a more comprehensive set of assumptions replacing or improving (A) and

(B);

3. further numerical implementation.

With respect of 1 the main reference is still the paper of Carr and Lee, [4]. An analogous

of their replicating correlation-neutral claims for the payoff h(x) on the variance can be
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derived, but it is unclear whether our original payoff (1.4) will still be close in value to a

modified correlation-neutral version of (1.8).

The motivation for 2 is to grant the existence of (1.5) under the minimal assumptions

on the relevant stochastic processes. For (3) the FFT method of [5] is being implemented

for Corollary 3.2 while practical approaches to Proposition 4.6 still need to be clarified.
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