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Target Volatility
A target volatility strategy (TVS) is a bond-equity portfolio
strategy aimed at keeping the instantaneous volatility of the
investment constant at a target σ. The belief is that this can
be achieved by allocating the equity exposure as an inverse pro-
portion of the equity volatility. As volatility rises the portfolio
is shielded in the bond to avoid losses. When it drops back,
the equity exposure is increased to benefit of the upside.

Motivation
In a market with stochastic volatility, consider a diffusion
model for the asset St and bond Bt:

dBt = rBtdt, dSt = µtStdt+
√
vtStdWt.

The fund dπt = ΘtdSt + ψtdBt in terms of the equity weight
wt = ΘtSt/πt has dynamics

dπt = ΘtdSt + ψtdBt = wtπtdSt/St + (1− wt)πtdBt/Bt
= rπtdt+ πt σ(µt − r)/

√
vtdt+ σπtdWt

after choosing wt = σ/
√
vt. Then πt has constant variance,

and derivatives on πt have Black-Scholes values.
However vt is not observable, and asset managers use instead
the realized variance with an estimator h(t) over a time window
δ, possibly capped at a maximum exposure C:

wh,δ,Ct = min

C, σ
(∫ δ

0

h(u)vt−udu

)−1/2 .

We then have a family of stochastic delayed differential equa-
tions (SDDEs) πh,δ,Ct in place of the simple SDE for πt above.
In this realistic setup, the correctness of Black-Scholes valua-
tions on a TVS must be demonstrated

Main Results
Proposition 1. If Q is a pricing measure under which e−rtSt
is a martingale, then e−rtπh,δ,Ct is also a martingale under Q.

Theorem 1. Under Q, assume that there exist p > 1 and
q > p/(p− 1) such that:

1. vt is in Lp(Ω× [0, T ]);

2. the sequence (wh,δ,Ct )2 is bounded in Lq(Ω× [0, T ]).

Let
Xt = log(π0) + (r − σ2/2)t+ σWt :

we have that limδ→0,C→∞ log(πh,δ,Ct ) = Xt in L1(Ω), ∀t ≤ T

Combining these two results we conclude that for reasonable
δ and C, Black-Scholes valuation is possible for forward con-
tracts and call and put options. Also, the statement of the
theorem is non-empty because of the following:

Proposition 2. The stochastic variance model by Heston and
the 3/2 model with h(t), δ being a sequence of equally weighting
or EWMA volatility estimators, satisfy the assumptions of the
theorem.

Numerical Methodology
We have numerically tested our theoretical findings with a
Monte Carlo simulation using an ad hoc numerical scheme
based on the SDDEs Markovian approximation of [2]. This
allowed faster and more accurate numerical simulations. The
equity St follows the Heston model.

Path Simulations

Figure 1: On the left the volatility realizes at high level, and the
TVS works as expected. On the right, the volatility plunges and
the cap C=1 is hit.

Volatility Surfaces

Figure 2: Volatility surfaces of options on TVS with equal weight-
ing estimator h and weekly estimation window δ, roughly constant
at σ = 0.1.

Vega

Figure 3: Vega of St compared to that of a TVS. Consistently
with its Black-Scholes character, the vega of the TVS is nearly 0.

Conclusion
In some popular stochastic volatility models the value of con-
tingent claims on TVSs is nearly Black-Scholes. Therefore, in
these models, it is possible to easily and transparently assess
return guarantees and hedge costs of target volatility funds.
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